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Abstract

Three-dimensional (3-D) models of outdoor scenes are
widely used for object recognition, navigation, mixed real-
ity, and so on. Because such models are often made manu-
ally with high costs, automatic 3-D modeling has been in-
vestigated. A 3-D model is usually generated by using a
stereo method. However, such approaches cannot use sev-
eral hundreds images together for dense depth estimation
because it is difficult to accurately calibrate a large num-
ber of cameras. In this paper, we propose a 3-D modeling
method that first estimates extrinsic camera parameters of
a monocular image seguence captured by a moving video
camera, and then reconstructs a 3-D model of a scene. We
can acquire a 3-D model of an outdoor scene accurately by
using several hundredsinput images.

1. Introduction

Three-dimensional (3-D) models of outdoor scenes are
widely used for object recognition, navigation, mixed real-
ity, and so on. Because such models are often made manu-
ally with high costs, automatic 3-D modeling is desired.

One of approaches to the problem is to use an image se-
quence that is called shape-from-motion [1, 4, 5, 7]. The
method can automatically recover camera parameters and
3-D positions of feature points by tracking natural features
in captured images. Factorization algorithm [7] is one of
the well known shape from motion methods that can esti-
mate a rough 3-D scene stably and efficiently by assuming
an affine camera model. However, when the 3-D scene is
not suitable for the affine camera model, estimated camera
parameters are not reliable. Although there exist other re-
construction methods [1, 4, 5], most of the methods recon-
struct only a limited scene from a small number of images
and are not designed to obtain a dense model. A method [4]
which recovers camera parameters and a dense scene can
reconstruct only a simple outdoor scene without occlusion
from a small number of images.

In order to reconstruct a complex outdoor scene densely
and stably, we propose a new 3-D reconstruction method
that first recovers extrinsic camera parameters of an input
image sequence that consists of several hundreds images,
and then generates a 3-D model of a scene by combin-
ing several hundreds depth maps together in a voxel space.
In the first process, we use a camera parameter estimation
method [6]. This method uses a small number of predefined
markers of known 3-D positions and many natural features
for stable and efficient estimation of extrinsic camera pa-
rameters. Dense depth maps are then computed by using
an extended multi-baseline stereo method. The proposed
method can reconstruct a complex outdoor scene densely
and accurately by using severa hundreds images of along
sequence.

2. Camera parameter estimation by tracking
features

This section describes an extrinsic camera parameter es-
timation method which is based on tracking features (mark-
ers and natural features). Figure 1 illustrates the flow dia-
gram of our algorithm. First, we must specify the positions
of six or more markersin thefirst frame of input sequence,
and extrinsic camera parameters in the first frame are esti-
mated. Then extrinsic camera parameters in all the frames
are sequentially determined by iterating the processes at
each frame (A). Finally, extrinsic camera parameters are re-
fined by minimizing the accumulation of estimation errors
over the whole input (B). Using this approach, we can esti-
mate extrinsic camera parameters efficiently and accurately
regardless of the visibility of initial markers.

2.1 Initial camera parameter estimation

By iterating the following processes from the first frame
to the last frame, initial extrinsic camera parameters and 3-
D positions of natural features are determined.

(a) Marker and natural feature tracking. Markers are
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Figure 1. Flow diagram of camera parameter
estimation.

tracked based on color and shape information. Natural fea-
tures are tracked using a robust estimation approach by pro-
jecting the 3-D positions of natural features that are esti-
mated until the previous frame [6]. Harris's interest opera-
tor is employed for robust tracking of natural festures.

(b) Extrinsic camera parameter estimation. The re-
projection error R, = [Xfp — X¢pl? is used as a measure
of estimation error, where x¢, isthe tracked 2-D position of
feature p and X+, isthere-projected position of estimated 3-
D position S, of feature p onto the image at the f-th frame
by camera parameter M ;. Then camera parameter M at the
f-th frame is estimated by minimizing the estimation error
Ef = X p WspRsp, where Wy, is aweighting coefficient rep-
resenting the confidence of the feature p at the f-th frame.

(c) 3-D Position estimation of natural features. The posi-
tion Sy of the natural feature p in real world is estimated
from multiple x¢p and My that have already been deter-
mined until the current frame. The position Sy, is computed
by minimizing the sum of squared distances between S, and
straight linesin 3-D that connect the centers of projection
and the positions x , of feature p in previousframes f.

(d) Computing confidence of features. We assume that
the distribution of tracking errors can be approximated by a
Gaussian probability density function. Then the confidence
of feature, Ws,, is computed by the inverse of variance of
re-projection error Ry p.

(e) Updating natural features. Feature candidates that sat-
isfy al the following conditions are added to the set of nat-
ural features at every frame.

The confidence Ws, is over a given threshold.
The matching error isless than a given threshold.

The output value of Harris's operator is more than a
given threshold.

The maximum angle between linesthat connect the es-

timated 3-D position of the feature candidate and cen-
ters of projection is more than a given threshold.

On the other hand, natural features that satisfy at least one
of the following conditionsare deleted at every frame.

¢ The confidence W, is under a given threshold.
e The matching error is more than a given threshold.

2.2 Error minimization in the whole input

In the final step, the accumulation of estimation errors
defined asE = 3¢ 3., WplXtp — Rtpl? is minimized over the
whole input with respect to the camera parameter M ¢ and
natural feature positionsSp. The camera parameter and fea-
ture positions that have already been estimated by earlier
process for each frame are used as initial values. W, is a
weighting coefficient for the feature p in the final frame of
the image seguence.

3. Dense 3-D reconstruction by hundreds-
baseline stereo

In this section, we describe a dense 3-D reconstruction
method using estimated camera parameters. First, a dense
depth map for each image is computed by using a multi-
baseline stereo method, then a 3-D model is reconstructed
by combining obtained dense depth maps in a voxel space.

3.1. Densedepth estimation by multi-baselinestereo

A depth map is computed for each frame by using a
multi-baseline stereo technique [3]. Depth value z of pixel
(X, y) in the f-th frame is computed by using the k-th to
the I-th frames (k < f < I) around the f-th frame. In the
following expression, we assume the focal length as 1 for
simplicity. Then, the 3-D position of the pixel (x,y) can
be expressed by (xz yz 2z), and we can define the projected
position (X;, §;) of the 3-D position (xz yz 2) onto the j-th
frame (k < j < 1) asfollows:

@%;,a9,a,1)" = MM (xzyz z 1)T, (6h)

where a is a parameter. In the multi-baseline method, SSD
(Sum of Sguared Differences) is employed as an error func-
tion, that is computed as the sum of squared differences be-
tween the window W in the f-th frame centered at (x,y)
and that in the j-th frame centered at (X;, ;). We define
the SSD function for the j-th frame in Eqg. (2) using RGB
components (Ig, lg, Ig).-

SSD+j(X, Y, 0x, 0y) =

{(Ire(X+ U,y +V) = Igj(X; +u, §; + V)2
(u—-ox,v—0y)cW

+ (ot (X+ Uy + V) — Igj (R + U, §; + V))?

+ (lgr(X+ Uy +V) = Igj(} + U, 9 +V)?), (2



where o, and oy are offsets of the window W for x and y
axes, respectively.

In the multi-baseline stereo method, the depth z of (X, y)
is determined so as to minimize the SSSD (Sum of SSD)
from the k-th frame to the I-th frame. We define a modified
SSSD in Eqg. (3) using the median of SSD because the tem-
plate of window W in the f-th frame may be occluded in
other frames.

SSSD¢(x, Y, 0x, 0y) =
|| SSDtj(XY,0x, 0y);
>4 ssDy(xy.00)<Tandlj-f|>D, (3
=k10;  otherwise.
where,

T = median(SSDk(X, Y, 0x, Oy), - - - ,

SSD¢(-p-1)(X ¥, Ox, Oy), SSD(1+p+1) (X, Y, Ox, Oy),
-+, SSD1i(X, Y, 0x,0y)).  (4)

Note that images from the (f — D)-th frame to the (f + D)-th
frame are not used for computing SSSD, because baselines
inthese frames are not long enough to estimate depth stably.
Multiple centered window approach [2] is also used to re-
duce estimation errors around occlusion boundaries. SSSD
isnow extended to SSSDM as follows:

SSSDM¢(x,y) = min (SSSD¢(x, Y, u,V)). (5)
(u V)W

We can estimate the depth value z(x, y) correctly by mini-
mizing SSSDM unless the pixel (x,y) is occluded in more
than (I — k — 2D)/2 frames. Additionally, we avoid a lo-
cal minimum problem and achieve stable depth estimation
using a multiscale approach [9].

3.2. 3-D model reconstruction in a voxel space

In this paper, a 3-D model is reconstructed in a voxel
space by combining several hundreds dense depth maps. In
the voxel space, each voxel has two values A and B which
are voted by aready estimated depth values and camera pa-
rameters. For each pixel (x,y) inanimage, both Aand B are
voted when the voxel is projected onto the pixel as follows.
Value A isvoted if depth of the voxel in camera coordinate
system isequal to z of (x,y). On the other hand, value B is
voted when depth of the voxel is equal to or less than z of
(X, y). We use theratio A/B as a normalized voting value.
A 3-D mode is then reconstructed by selecting the voxel
whose A/B is more than a given threshold. Note that the
color of the voxel is decided by computing a mean color of
pixelsthat have been voted to the value A of the voxel.

4. Experiments

We have conducted two experiments: One is a model
reconstruction of a single building and the other is a re-
construction of a street scenery. Both scenes are complex

and have many occlusions. In both experiments, we use a
hand-held CCD camera (Sony VCL-HGO0758) with a wide
conversion lens (Sony VCL-HGO0758). Theintrinsiccamera
parameters are estimated by Tsai’s method [8] in advance.

4.1. Reconstruction of building

In the first experiment, we captured a single building
(Suzaku-mon) shown in Figure 2(a) by walking around the
building viewing it at the center of image. This image se-
quence lasts 40 seconds and has 599 frames (720x480 pix-
els, progressive scan).

In this experiment, a dense depth map of the f-th frame
isobtained by using every two frames from the (f — 100)-th
to the (f + 100)-th frames excluding the (f — 15)-th to the
(f+15)-th frames. Figure 2(b) shows computed dense depth
maps in which depth values are coded in intensity. Itis con-
firmed that correct depth values are obtained for most part
of the images. Figure 3 shows a reconstructed 3-D model
with textures obtained by combining 399 dense depth maps
together in the way of voxel voting that is described in Sec-
tion 3.2. In this experiment, the voxel space is constructed
of 10cm cube voxels. It can be observed that awall behind
a column of the building is reconstructed even if the wall
is occluded from time to time. We also observe that some
positions are holed because they are not visible enough for
sufficient precision in the image sequence.

4.2. Reconstruction of street scenery

In the second experiment, astreet is captured as shownin
Figure 4(a) by the CCD camera put on a slowly moving car.
This image sequence lasts 19 seconds and has 284 frames
(720x480 pixels, progressive scan).

A dense depth map of the f-th frame is obtained by us-
ing 30 frames from the (f + 6)-th to the (f + 35)-th frames.
As shown in Figure 4(b), it is confirmed that correct depth
values are obtained for most part of the images even around
the occlusion edges. However, there exist some incorrect
depth values at the right of the trees because the areas are
occluded by thetreesduring over 15frames. Figure 5 shows
areconstructed 3-D model with textures obtained from 249
dense depth maps. In this experiment, the voxel space is
constructed of 10cm cube voxels. Note that many parts of
walls are holed around the windows of the buildings. We
confirmed that it is difficult to reconstruct the reflective ob-
jects.

5. Conclusion

In this paper, a dense 3-D reconstruction method from a
monocular image sequence captured by a hand-held video
camera is proposed. In experiments, the dense 3-D scene
reconstruction issuccessfully accomplished by usingalong
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Figure 2. Input images and estimated dense
depth maps (Suzaku-mon).

Figure 3. Results of outdoor scene recovery
(Suzaku-mon).

seguence of images captured in complex outdoor environ-
ments. However, we observe that some parts of recon-
structed models are holed. In future work, integration of
3-D models from multiple image sequences should be in-
vestigated for obtaining a complete surface model.
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