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Abstract

This study proposes a new factorization method for shape and motion recov-
ery. It adopts three mutually orthogonal vectors to factor a measurement matrix
in order to get two matrices which represent object shape and camera/object
motion. In past, the fourth greatest singular value of the measurement matrix
was ignored. But when noise is larger enough so that the fourth greatest singular
value can not be ignored, it would be difficult to get reliable results by using the
traditional factorization method. In order to acquire reliable results, this study
starts with adopting an orthogonalization method to find a matrix with the three
mutually orthogonal vectors. By using this matrix another matrix can be ob-
tained. Then, the two expected matrices can be obtained through normalization.
During the process of getting the two expected matrices, this study also conducts

several experiments to discuss the feasibility of the proposed method.
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1. Introduction

1.1 Background

Much attention has been put on computing the 3-D shape and motion from a long
sequence of images during the last few years. Previous approaches for solving this
problem usually consider: 1) whether the camera is calibrated or not, 2) whether
a projective or an affine model is used [1][2][11] [12][14].

Among them, Tomasi and Kanade [1][2] developed a robust and efficient
method for accurately recovering the object shape and camera/object motion
from a sequence of images under orthographic projection ( shown in Figure 1),
called factorization method. The factorization method has been believed to be
possible under linear approximations of imaging system and without camera cal-

ibration.

object

. o

frames
Figure 1. Image system.

Lately, the original factorization method have been extended to scaled or-
thographic, paraperspective projection by Poelman and Kanade [3][4]. It can
be applied to a wider realm of situation than the original factorization method.
Furthermore, Costeira [6] improved the original factorization method, and factor-
ization method would be possible to segment and recover the motion and shape
of multiple independent moving objects. Recently, Triggs [8] and Deguchi [7]
improved the factorization method so that it can be fitted to the case of truly
perspective images if projective depths are recovered. However, in most cases they

all start with the three greatest singular values acquired by the Singular Value



Decomposition (SVD) technique [13] to factor the measurement matrix into t-
wo matrices. Then, by normalizing the two matrices the expected two matrices
which represent object shape and camera motion is obtained.

Unfortunately, when the image noise is larger enough so that the fourth great-
est singular value can not be ignored, the traditional factorization method might
fail to reach the accurate solution. Another problem remains in the normalization
procedure of the factorization method. It is because that sometimes the unknown
invertible matrix might be difficult to get [5][7]. Sasano and Deguchi introduced
several methods which are possible for solving the problem of the normalization.
At the same time, several methods, such as Powell’s method, conjugate gradient
method, or Quasi-Newton method [13], also have been known recently. However,
it has been found that the different methods might come up with different results.
Under this circumstance, the problem of the normalization still exist.

This study concentrates on factorization method from the Rank-Theorem per-
spective, and improves the step of factoring by the SVD technique. According to
the Rank-Theorem, it would be possible to get three mutually orthogonal and in-
dependent vectors from a measurement matrix [10][20]. Once the three mutually
orthogonal vectors were identified as one matrix, it would be easy to take a form
of 3-D linear combination equation for obtaining another matrix whose elements
are three coefficients of 2F sets (F represents the number of frames). Then the
normalization of the two matrices can help this study to recover object shape and
camera motion, and by using the proposed method the problem of normalization
can be easily solved (described in Section 4).

This paper presents a form of factorization under orthographic projection,
although the form of factorization also can be easily extend to other projective
models. This study also provides the field of structure-from-motion with three

advantages as follows:

1. It can robustly recover object shape and camera motion even if the emer-

gence of image noise.
2. It can effectively solve the problem of normalization.

3. Its computation is very fast due to a simple algorithm.



In addition, this paper also presents a series of experiment to show the feasi-

bility of the proposed method.

1.2 Paper Organization

The remainder of this paper is organized as follows. Section 2 briefly recall a sum-
mary of traditional factorization developed by Tomasi and Kanade and point out
several problems. Section 3 shows how to improve the traditional factorization.
Here, this study proposes a 3D linear combination algorithm that use a simple
and straightforward formulation of the orthogonalization method to decompose
measurement matrix into two matrices. Section 4 redescribe the procedure of
normalization in details, and shows the solution of the problem of normalization.
Section 5 shows the complete algorithm for the 3DLC factorization method. Sec-
tion 6 provides several experiment to prove the feasibility of the proposed method,
and compare the traditional method with the proposed method. Section 7 shows
a simple application of the proposed method for real/synthetic complex scene.

Finally, Section 8 provides a conclusion and gives directions for future work.



2. A Summary of Traditional Factorization Method

and Problems Description

This section presents a summary of the factorization method under orthographic
projection, and points out two problems: one is on the fourth greatest singular
value (described in Section 2.3), and the other is on the nomalization (described
in Section 2.4).

2.1 Orthographic Projection

Under orthographic projection model, shown in Figure 2, the projection (z ¢, y¢p)
of the p-th point s, = (s,,, 5y,, szp)T in 3D space onto image frame f is given by

the following equations:

Tp = i?'(sp_tf)a Ysp :j?'(sp_t.f)v (1)

where t; = (t,,,1,,, tzf)T is the vector from the world origin to the origin of image

frame f. iy and j; are a pair of unit vectors which represent x-axis and y-axis.

Image
Plane

P

—
focal length

Figure 2. Orthographic projection in two dimensions.

These equations can be rewritten as:

mfp:m?'sp*‘twf, yfp:n:,‘r'sp+tyfa (2)



where
my =iy, ns = jy, (3)
ty = —(t7ip),  ty, = (7 i) (4)

2.2 Measurement Matrix

Suppose that P feature points were tracked over F' frames of an image sequence
were tracked, and their image coordinates {(z,, ysp)|f =1,...,F,p=1,..., P}

were collected into a single 2F X P measurement matrix W.

r11 ... I1p
W= F1 FP , (5)
Y ... Yip
| YF1 --- YFpP |

Each column of the measurement matrix W represents the image trajectory of

one feature point over all frames, and each row of the measurement matrix W

contains the image coordinates x or y of all the feature points in each frame.
Equations (2) and (5) of all feature points and frames can now be combined

into a single matrix equation as follow:
W =MS +Te,, (6)

where M is the 2F x 3 motion matrix whose rows are mg': and n;":, S isthe 3 x P
shape matrix whose columns consist of s, points, and T is the 2F x 1 translation
vector that collects the projections of camera translation along the image plane
and e, = (1,...,1)7.

Then a “registered” measurement matrix can be developed for which the

translation vector is subtracted from W as follow:
W =W —Te] =MS. (7)

Hence, the measurement matrix W is a product of two matrices which represent
motion matrix M and shape matrix S. According to Rank-Theorem, the maxi-
mum rank of M(2F x 3) and S(3 x P) is three. Thus, the maximum rank of the

measurement matrix W is also three.



2.3 Decomposition of Measurement Matrix with SVD

Most traditional factorization methods use the SVD algorithm to decompose the
measurement matrix W. Here, this subsection present a description of the SVD
algorithm for decomposing W into M and S. Besides, the research questions of
this study will also be expressed.
As previously discussed, rank(W) < 3 is proved. Here, assume that rank(W) =

3. Hence, the three greatest singular values can be determined through the SVD
technique, and the fourth and its following singular values almost approaches to
zero. Equation (8) displays this process. W, factoring it into a product of two

matrices M and S.
W = U VI + U VE

U2, V,F
= MS, (8)

12

where ¥, = diag(01, 03, 03) is a 3 x 3 diagonal matrix whose diagonal values are
the greatest three singular values of W, and ¥y = diag(oy,...,0p)is a (P —3) x
(P — 3) diagonal matrix whose diagonal values are close to zero.
From Equation (8), motion matrix M and shape matrix S can be defined as
follows:
M=uyx:,  §=x:v. (9)
First Problem: When noise corrupts the images, the rank of W will no
longer be three. Consider a problem when the fourth greatest singular value
is not so small that o4 ~ 03. Therefore, adopting the SVD algorithm cannot
accurately or completely reconstruct the shape and motion. The solution of this

problem will be shown in Section 3.

2.4 Normalization of M and S

The decomposition of Equation (8) is determined as a linear transformation. Any
non-singular 3 X 3 matrix A and its inverse could be inserted between M and S.
Their product should still equal to W. Thus the actual motion and shape are
provided as follows:

M = MA, S =A"'S. (10)



The correct A can be determined using the fact that the rows of the motion
matrix M represent the camera axes, and they must be of a certain form. Since
if and j; are unit vectors, a geometry constraint can be defined by Equation (3)
as follow :

|mf|2 =1, |nf|2 =1, (11)

and because they are orthogonal, another geometry constraint can be also defined
as follow :
my -y = 0. (12)

Using Equations (11) and (12), the matrix A can be obtained.

Second Problem: In the original papers [2][3], no details of the normaliza-
tion procedure or criterion to be optimized were presented, and in [5][7] pointed
out that many choices are possible for this normalization and a variety of results
have been obtained depending on the choice. Indeed, at our knowledge, matrix
A might not be obtained. The more detailed description of the reason and the

solution can be found in Section 4.



3. Decomposition of Measurement Matrix Us-

ing 3-D Linear Combination

In Section 2.2, maximum rank of W be three was introduced. Let us consider the
Rank-Theorem again. The rank of three means that there are three independent
and mutually orthogonal vectors. Each row of W is projected into a space which
is constructed by the three mutually orthogonal vectors (as illustrated in Figure
3). This study attempts to find the three mutually orthogonal vectors S, and
then to solve M by using the S and W.

Figure 3. A space built by three mutually orthogonal vectors.

3.1 Orthogonalization

First, three orthogonal vectors must be found or built from W. A good method,
the Gram-Schmidt orthogonalization method, can straightforwardly and efficient-
ly find normal orthogonal vectors from a series poly-dimensional vectors. In this
study, the Gram-Schmidt orthogonalization method is adopted to find three mu-
tually orthogonal vectors.

Rewrite the elements of W to be W; = (Wi, Wya, ..., Ws,)T, and suppose
that the rank of 3 x P matrix S = (Wy,, Wi,, Wi, ) is three. For getting the three
orthogonal vectors §;,7 = 1,2, 3, now the Gram-Schmid orthogonaliation method

is extended as follows:

§1 = Wy, (13)



AT ~
- ~ 81 Wy 4
S2 = Wi, — ”T“;Sh (14)
T | aT
N - Sl . Wk3 . S2 W]c3 N
_ _ — 2 ks 15
and 8§, and S3 can be reformulated as follow:
i g7
s =W, — Y U Wy g (16)
’ 7=2 ||S7f_1||2

According to the Rank-Theorem, the rank of S = (81, 82,83)7 is still three, and

there are following properties:
§T .5, =0, §T .33 =0, §7 .83 =0. (17)

When the three mutually orthogonal vectors were identified as one matrix,
it would be easy to take a form of 3D linear combination equation for obtaining
another matrix whose elements are three coefficients of 2F sets (shown in Equation
(20)).

Let

mi1 M2 Mg

N may Mmag ma3

Map1 Map2 MM2F3

and each element of M can be obtained as follow:

N AWf

mysr = “ ”2 y k= 1,2,3. (19)

As a consequence, the rows of W are the product of the elements of §; multiplied

by 7 ¢; in each equation (frame) as following expression,
\‘?\'ff = mflgl + ’ﬁlf2§2 + 'ﬁ’Lf3§3, (20)

and as previously described, by using the proposed algorithm (3DLC) measure-
ment matrix W can be also separated into M and S , as good as Equation (8)
obtained by the SVD technique.

So far, how to select k; was not described yet. In order to reach the general-
izability, this study supposes that rank(W) > 3. At first, k; = i,ky = F + i are

9



chosen, where 7 is a fixed positive integer with 1 <7 < F, say ¢ = 1. Then the k;

is selected according to the following procedure.

Let
ly = |wyll = (21)
§1 = Wkl, (22)
P
ﬁ’Lfl = §’fo:Z’wfj§1j, (23)
j=1
Mgy = (25)
L= (26)
write
up= ot 4 (27)

then the minimum value of uy is chosen so that k3 = f. Once ki, ko, k3 were
determined, the three orthogonal vectors are obtained by the equations (13),
(14), and (15).

In Section 2.3 a problem was pointed out that the fourth greatest singular
value which is very close to the third greatest singular value (o4 ~ 03). Let us
consider again, in this situation the rank of W will be over three. The solution of
the problem is that even if the o4 ~ o3, the elements of W can be also projected

into a space which is constructed by S through the proposed method.

3.2 Determination of §;

So far, how to determine the first independent vector §; was not described. The
determination of §; has many approaches. In general, there are three alternative

ways for solving this problem as follows:

10



1. Based on the general rule, the feature points of the first frame are the most

accurate with respect to all other frames. The first vector could be chosen.
§1 = Wi. (28)

2. Anyone of the exact vector w; could be chosen from W.
§:1 = Wezact- (29)

3. Choosing a new vector which is obtained by the average of W also could be

considered.
1 2F

§1j:ﬁ;wij, j=1,...,P. (30)

In our experiment, the first approach is employed.

11



4. Solving the Problems of Normalization

In Section 2.4, a summary of the solution of normalization has been described.
However, Equations (11) and (12) are not sufficient enough for obtaining the
invertible matrix A. Here, how to find A with geometry constraints will be
redescribed.

Geometry Constraint: The matrix A can be solved by two geometry con-
strains, one is the length of unit vector iy and j¢( = 1), and the other is the inner
product of orthonormality of axes ( = 0). Then the following equations can be

developed to satisfy these constraints.

[z Al = 1,
Imf, p Al = 1, (31)
r‘n?A AT p = 0.
Here, Let
a d f
B=AA"T=|d b e |, (32)
f e ¢
B is a symmetric matrix, then Equation (31) can be rewritten as:
rh:frBrhf = 1,
m?+FBmf+F = 17 (33)

From Equation (33), the matrix B can be developed as :

B=LAL", (34)
where,
1 0 0
L = |¢ 1 0F, (35)
foe
e g 1
M 00
A =10 Xx 0], (36)
0 0 X




o8

d2 2 _ 2
M=a,  A=b-L, VDR S Gl (37)
a a b—

|

Because the measurement matrix W is not accurate, Equation (33) can not pro-
vide us with a solution of B. Instead, the conjugate gradient method [13] is
adopted to reach a minimum value of the Equation (38) through iterations of

acquiring B value.

G(B) = % (;(m’.—;Bmf -1’ + ;(mﬁ"BmHF)?) : (38)

Then A can be determined as

A=LA:z, (39)

Remark: According to Equation (39), the diagonal elements of A must be
positive,
A= diag()\l, )\2, )\3), Al > 0. (40)

Indeed, A\; might not be necessarily positive so that the matrix A cannot be solved.
The reason is why a problem described in Section 2.4 was pointed out. Of course,
the iterative process can be terminated, or B can be redefined to develop an
approximate symmetric matrix by using non-linear algorithm. However it seems
not a good idea. By using the proposed method, because the first vector §; has
2F selection so this problem can be easily solved that all A; are positive. The

solution of this problem is demonstrated as the following procedures:
1. Let 7 = 1.
2. Let §; = w;.
3. By using Equations (14) and (15), §; and §3 can be solved.

4. For getting another matrix M, Equation (38) can help us to check ; is

positive or not.
5. If 3X; < 0 then goto (2) until all A; are positive.

In our experiment, the positive ); can be successfully obtained only through one

or twice selection.

13



So far, Equation (39) are not so sufficient to determine the matrices M and S
completely. The reason for this is because the origin point of the world coordinate
was only limited, but the directions of the axes of the world coordinate is not
limited. If the axes of the world coordinate are clarified, then from W the matrices

M and S can be determined completely. Thus, A can be redefined as follow :
A=LA*R, (41)

where R is a 3 x 3 normal orthogonal matrix, and RR? = I, I is a 3 x 3 identical

matrix. For example, the axes of the world coordinate are chosen such that
i; = (1,0,0)7, ji = (0,1,0)". (42)
Then Equation (10) can be write as:

(ﬁ”bn,ﬁ”bm,ml?,)LA%R = (170a0)a (43)
(mF+1717mF+1,27mF+1,3)LA%R = (071’0) (44)

Let R = (r1,r2,r3). Then from RRT = I, rT rl can be obtained through

following equations.

Mpsn1y Mpi12, Mps1s) LA2, (45)

and r; satisfies

rir; =0, rir; =0, |rs|| = 1. (46)

These equations will yield two solutions, this reflects the difference between the
directions of the z-axis of the world coordinate and the z-axis of the coordinate
system which indicates the orientation of the camera corresponding to the first

image.

14



5. Outline of the Complete Algorithm

Based on the development in the previous sections, now a new complete algorithm
can be developed for the factorization of the measurement matrix W derived from
a sequence of images into motion matrix M and shape matrix S as defined in
Equation (7).

1. Compute the matrix S which consist of three mutually orthogonal vectors

as the following procedure:

(a) Let j = 1.

(c) 8 and 83 can be solved through Equation (14) and (15).

2. Once matrix S is obtained, for fitting Equation (8), compute another matrix
M through Equation (19).

3. Compute the symmetric matrix B by imposing the geometry constraints

defined in Equation (33), and Equation (38) can help us to acquire B.

4. Check J; is positive or not through Equation (37). If 3\; < 0 then goto

(1b) and increases j until all \; are positive.
5. Determine the expected posture matrix R.
6. Compute the invertible matrix A through Equation (41).

7. Compute the motion matrix M and the shape matrix S by Equation (10).

15



6. Experimental Results

This study will present four sets of experiments to demonstrate how the pro-
posed method works: 1) An analysis of recovered object shape with real images.
2) An evaluation of recovered object motion with real images. 3) A simulation
with synthetic data whose the fourth greatest singular value is equal to the third,
and a comparative analysis between the results of this method and the results of
the traditional factorization method will be presented. 4) A comparison of com-
putational cost between the proposed method and the traditional factorization
method.

6.1 Evaluation of Recovered Object Shape

The proposed factorization method is first perform with a real image sequence.
The requirement here is that every feature point must be visible in each frame,
and can be tracked throughout all the images. Here, the occlusion problem is
exclude. Experimental target shown in Figure 4 was acquired by hand-held video
camera. For feature tracking, an algorithm is adopted based on [15]. At the
beginning, 16 points are selected in the first frame, and these feature points are
automatically tracked and kept throughout a sequence of 16 frames shown in
Figure 5.

The reconstructed shape is shown in Figure 6, where an algorithm of delaunay
net is adopted to build a three dimensional model with 16 triangular patches
[14][16][17][18] [19]. The recovered shape is very similar to real object for visual
comparison.

To evaluate the shape recovery performance quantitatively, the orientations
of facets in relation to one another are shown in Table 1 which illustrates the
comparison of the results of the three ways: measured angles on the actual model
(real), estimated angles with traditional method (SVD) and estimated angles
with the proposed method (3DLC).

The distance of the dl,---,d11 (shown in Figure 6) are also measured. The

error between real and estimated data are evaluated by Equation (47).

Real; FEstimation;
||Real|| ||Estimation||

=1

=1

! .L | (47)

16



2nd frame

1st frame

3rd frame 4th frame

5th frame

6th frame

7th frame 8th frame
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9th frame 10th frame

11th frame 12th frame

13th frame 14th frame

15th frame 16th frame

Figure 4. A sequence of 16 frames.
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2nd frame

1st frame

3rd frame 4th frame

5th frame

6th frame

7th frame 8th frame
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»

9th frame 10th frame

11th frame 12th frame

13th frame 14th frame

15th frame 16th frame
Figure 5. The 16 feature points selected by the automatic detection method.
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Figure 6. Reconstructed shape with delaunay net and 16 triangular patches.

Table 1. Quantitative evaluation of shape recovery. The proposed 3DLC is com-

pared with traditional SVD in angles between reconstructed facets.

Facets | real | estimation(SVD) | estimation(3DLC)
0-1 45° 46.47° 44.21°
3-4 45° 47.54° 45.58°
0-2 80° 82.08° 80.97°
3-5 | 80° 80.91° 81.96°
1-2 90° 88.68.° 89.68°
4-5 90° 101.71° 97.02°
0-3 85° 91.77° 89.08°
1-4 0° 3.88° 5.78°
2-5 0° 4.04° 1.38°

21



Through the normalization of (d1,---,dL), L = 11 X 2 sides —1 = 21, Using
the proposed 3DLC method, € = 0.045 can be obtained, and Using the traditional
SVD method ¢ = 0.042 can be obtained. According to the results, the error of

estimated size was within the limit of 4.5 percent.

6.2 Evaluation of Recovered Object Motion

Above experiments have been shown the feasibility of reconstruction 3D shape
of object. In relation to motion recovery, this subsection a performance of recon-
struction motion of object will be presented, and this experiment only focuses
on y-axial rotation because my laboratory does not have much equipments for
measuring other motion. Figure 7 was acquired by a static digital camera, and
the target is rotated 10 degrees on each frame. Figure 8 shows 6 feature points
selected by the automatic detection method, and whole sequence is 6 frames. To
evaluate the motion recovery performance quantitatively, the result is shown in
Figure 9 which illustrates the comparison between the measured rotation and

computed y-axial rotation of object with the proposed method (3DLC).

6.3 Analysis of Synthetic Data with Noise

This study also demonstrates the robustness of the proposed method in the pres-
ence of noise. A situation is simulated that 0, = 03. For attempting to solve the
first problem by using the proposed method, a comparison between the proposed
3LDC method and traditional SVD method will be displayed on two synthetic
image sequences shown in Figure 10. One (a) is 16 feature points and whole
sequence is 70 frames, and the other (b) is 80 feature points and whole sequence
is 100 frames, and their the fourth greatest singular value are equal to the third.

In Figure 11, the results in left side were obtained with the SVD technique and
the results in right side were obtained with the proposed 3DLC method. From
Figure 11, it is observed that (a) could not recover shape completely, but (c) could
recover, because that (c) has more points and frames than (a). Although (c) could
recover, several points were not observed on the same plane. By comparison, it

is clearly shown that (b) and (d) could accurately recover the object shape.
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2nd frame

3rd frame 4th frame

5th frame 6th frame

Figure 7. A sequence of 6 frames.

23



2nd frame

3rd frame 4th frame

5th frame 6th frame

Figure 8. The 6 feature points selected by automatic detection method.
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Figure 9. Measured and computed y-axial rotation of object.

40 T T T T T T 20 N T T
16 points, 70 frames <> 80 points, 100 frames
60T % 4 40 e 4
60 [ —
80| ] ——
80| — -.‘_'S‘ —
1001 | s -
100 [ <.
= . N, v
g % T | — L=~ &
B120[ e S 1 Z120 e e
L B 140
140 DN L\ =
160 [ =i

160 | - ] 1801 ~ ﬁ" X
1801 m 200 —%'('{(. r%\w

=7 e

20%5 100120140 160180 200220240260280  2°%50 100 150 200 250 300
(pixel) (pixel)

(a) (b)
Figure 10. Trajectories of two synthetic data in which g4 = 03: (a) shows trajec-

tories of 16 points over a sequence (70f), and (b) shows trajectories of 80 points

over a sequence (100f).
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Figure 11. Reconstruction of object shape from synthetic data shown in Figure

10: (a) and (c) are with traditional method, and (b) and (d) are with the proposed
method.
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6.4 Computational Cost

Now this study shows a comparison of efficiency between the proposed 3DLC
algorithm and the SVD technique. For measuring computational cost, 20, 30, - - -,
and 100 feature points are automatically selected in a sequence of 100 frames
(their 16 frames is also shown in Figure 4). The obtained computational costs
are shown in Figure 12. Here, the feature tracking time is not included. In result,
the proposed 3DLC algorithm is more efficient than SVD. Especially, when points
increase, the difference between the SVD technique and the proposed algorithm

becomes obvious.
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Figure 12. Comparison of computational cost.

27



7. An Application of the Proposed Method for
Real/Synthetic Complex Scene

The factorization method has been applied on several provinces such as, 3-D
shape modeling [17][19], reconstruction of terrain from an aerial image sequence
[3], reconstruction of human stomach from an endoscope image sequence [7], etc.
Recently, in the field of real complexness, the fusion of real and synthetic object
on virtual environment has been paid much attention.

Here, this study attempts to build an application of using the proposed
method for putting the recovered three dimensional shape data on virtual en-
vironment. In regard to getting 3-D shape data of real objet, contact digitizer
can help us, but it is limited by location. By using factorization method, non-
contact digitizer can be developed if exact data is not require. In Section 6.1,
three dimensional feature points could be recovered. However, the recovered fea-
ture points are not complete model.

In order to modeling, a delaunay algorithm [14][16] is adopted to bulid a
net that the points in relation to one another are linked. Then, imposing two
constraints: the orientation of viewer and the texture information, ambiguous
patches could be reduced and a complete model could be construct . A more de-
tailed description of the method can be found in [17][19]. Once the reconstructed
three dimensional model is built,

recovered 3D shape can be registered into virtual environment or CAD tool,
and it could be manipulated, redesigned a new model, created a composed im-
age or a complex scene (shown in Figure 14). The disposition of real /synthetic

complex scene is illustrated in Figure 13.
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Figure 13. The disposition of real/synthetic complex scene.

Figure 14. Recovered object and synthetic object on virtual environment.
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8. Conclusion

In this paper, a new factorization method which uses 3-D linear combination to
decompose the measurement matrix for shape and motion recovery was proposed.

From good point correspondences, the proposed method can recover the object
shape accurately comparably to those by SVD technique, and also recover robust
camera/object motion. It is also demonstrated that when noise is larger enough
so that the fourth greatest singular value can not be ignored, the proposed method
can still recover the shape robustly. Furthermore, the proposed algorithm is very
simply and fast. At the same time, the problem of the normalization described in
Section 2.4 and 4 were solved by our method. As a consequence, the present work
expands the application of the shape and motion recovery from unreliable data.
On the other hand, an application was implemented for real/synthetic complex
scene, and This system provide a new concept for virtual reality use.

Future works include: (1) extension of the method to other projective mod-
els such as scaled orthographic, paraperspective and perspective projections; (2)
application of the method to 3D model construction of real complex scenes for

real-time use.
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Appendix

A. Recovery under Scaled Orthographic Pro-
jection

Scaled orthographic projection models the scaling effect of perspective projection,
but not the position effect. The scaled orthographic factorization method can be
used when the object remains centered in the image, or when the distance to the

object is large relative to the size of the object.

A.1 Scaled Orthographic Projection

Under scaled orthographic projection, object points are orthographically project-
ed onto a hypothetical image plane parallel to the real image plane but passing
through the object’s center of mass c. This image is then projected onto the

image plane using perspective projection (see Figure A.1).

Image Hypothetical

Plane Image
Plane 1

—
focal length

Figure A.1. Scaled orthographic projection in two dimensions.

The perspective projected points all lie on a plane parallel to the image plane

so that their depth are zy = (c —ts)-ks. Thus, the coordinate (xy,,yys,) is scaled
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by the ratio of the focal length to the depth z;.

l . l .
Tp = ;f(lif -(sp = t5)), Yip = ;f(ff - (sp — t5)), (48)
For simplicity, we assume unit focal length, [ = 1. We fix world origin at the

object’s center of mass, and rewrite the above equations as:

T T
Tpp =My Sy +1ap, Yp =My - Sp + 1y, (49)
where
2 = —t7 Ky, (50)
t i t-j
T A i _ Yy ds
tzf — _Ta tyf - _77 (51)
; .
f Zf

A.2 Decomposition

Because Equation (49) is identical to Equation (2), the measurement matrix W
can still be written as W = M S, and using 3DLC algorithm can factor W into
the product of M and S.

A.3 Normalization

For solving matrix A, we combine the two Equations (52) to impose the constraint

as follow:

1
m7m; = nyng <: z_?) , (53)

and because my and ny are just scalar multiples of iy and j¢, we can still use the

constraint that
m7n; = 0. (54)

Once the matrix A has been found, the reconstructions of motion M and shape

S are acquired by Equation (10).
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B. Recovery under Paraperspective Projection

Paraperspective projection models not only the scaling effect of perspective pro-
jection, but also the position effect. As a consequence, it is a closer approximation

to perspective projection than orthographic/scaled orthographic projection.

B.1 Paraperspective Projection

The paraperspective projection of an object onto an image, illustrated in Figure
B.1, involves two steps: 1) An object point is projected along the direction of
line connecting the focal point of the camera to the object’s center of mass, onto
a hypothetical image plane parallel to the real image plane and passing through
the object’s center of mass. 2) The point is then projected onto the real image

plane using perspective projection.

Image Hypothetical
Plane Image
Plane -

—
focal length

Figure B.1. Paraperspective projection in two dimensions.

Thus, the coordinate (zyy, ys,) can be defined as the following equations.

if -ty J

?'tf T T
(64
(55)

For simplicity, we assume unit focal length, [ = 1. We fix world origin at the

. ) L.
Tfp = Z—f{ ll? + k?] sp—(tF-i5)}, Yip = Z—f{ |:]? +

2§
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object’s center of mass, and rewrite the above equations as:

T T
Tpp =My Sy +1ap, Yp =My - Sp + 1y, (56)
where
= _t:; - ky, (57)
t i t.j
_ £ _ s
tzf - _Ta tyf - _77 (58)
ir —t..k jr — t,.k
mf — f f f7 nf — Jf Ys f. (59)
Zf Zf

B.2 Decomposition

Because Equation (56) is identical to Equation (2), the measurement matrix W
can still be written as W = M S, and using 3DLC algorithm can factor W into
the product of M and S.

B.3 Normalization

For solving matrix A, from Equations (59), we impose the constraints as follow:

mIim nin min 1
ff—ff—ff<: ) (60)

= = e
1482, 1418, oty \ 22

Once the matrix A has been found, the reconstructions of motion M and shape

S are acquired by Equation (10).
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