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Abstract

To appropriately reproduce a real object in a mixed en-
vironment, it is necessary to estimate reflectance properties
of object surfaces. This paper describes a new method of
densely estimating non-uniform surface reflectance proper-
ties of an object with convex and concave surfaces using
registered range and surface color texture images obtained
by a laser rangefinder. The proposed method determines
positions of light source to take color images for discrim-
inating diffuse and specular reflection components of sur-
face reflection. The Torrance-Sparrow model is employed
to estimate reflectance parameters using color images un-
der multiple illumination conditions. Experiments show the
usefulness of the method.

1 Introduction

In mixed reality (MR), it is needed that a virtualized ob-
ject is merged in real world without a feeling of wrongness
[1]. To represent a virtualized object photo-realistically,
there are two approaches. One is called an image based
rendering (IBR) that has often been used to reproduce real
objects in computer graphics (CG). Generally, IBR methods
require a large number of real images to represent the vir-
tualized object under arbitrary illumination conditions and
arbitrary viewing directions. Mukaigawa et al. [10] have
proposed a photometric IBR in which a virtualized object
is represented with a few real images. However, in the case
of using a limited number of images, a problem occurs; i.e.,
the appearance of object is not faithfully reproduced since
some part of the object is interpolated linearly. The other
method is called a polygon based rendering (PBR). This
method reproduces the object shape and surface reflectance
properties. If the object surface reflectance properties are
estimated at once, the virtualized object can be rendered
appropriately under virtualized illumination conditions es-

timated from real environments [11, 3]. A number of meth-
ods of estimating reflectance properties of an object surface
have been developed [2, 5, 6, 7, 8, 9, 12]. In these meth-
ods, surface reflectance models with several parameters are
employed and shape and color information of the object is
used to estimate the reflectance parameters.

In some works [2, 5, 9], it is assumed that an object has a
uniform reflectance property over the entire surface. Re-
flectance parameters are estimated by using the standard
least-squares method to fit a reflectance model to a given
color image. Due to the assumption, such methods can-
not be applied to objects which consist of several different
materials and have non-uniform reflectance properties. To
treat non-uniform surface objects, Kay and Caelli [6] have
proposed a method which uses multiple images of an object
under different lighting conditions and estimates reflectance
parameters by solving simultaneous equations. However,
the method still has a problem that results are not stable es-
pecially when the specular reflection component, which is
one of the reflection components, is very small.

Recently, Sato et al. [12] have developed a methodology
to estimate non-uniform reflectance properties. They set up
an object on a robot arm and measure the object witha CCD
camera and a rangefinder from a large number of viewpoints
by rotating the robot arm. In the method, reflectance param-
eters are stably acquired by decomposing the surface reflec-
tion into two components based on the singular value de-
composition (SVD) technique. Although the method can be
applied to objects with non-uniform reflectance properties,
the shape of object should be limited. This is because it is
difficult to observe the specular reflection component over
the entire surface, since the lighting condition for a pose
of the object against the camera cannot be changed in the
method.

We propose a new method for estimating non-uniform
reflectance properties by observing the specular reflec-
tion component densely in the image obtained by a laser
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Figure 1. Flow diagram of estimating surface
reflectance properties.

rangefinder which accurately takes registered range and
color images of an object. In this paper, an algorithm is pro-
posed to determine light positions with which the specular
reflection component is strongly observed over the surface
of a complex object with convex and concave surfaces.

2 Estimation of reflectance parameters from
range and color images

In the present work, the Torrance-Sparrow model is em-
ployed as a surface reflectance model to estimate object sur-
face reflectance properties from range and color images.
Figure 1 shows a flow diagram of estimating surface re-
flectance properties. Our process consists of four parts,
which are a measurement of an object (A, D), a preprocess-
ing (B), a selection of light source (C), and an estimation of
reflectance parameters (E).

2.1 Torrance-Sparrow model

In this paper, the Torrance-Sparrow model [13], which
physically represents object reflectance properties, is em-
ployed to estimate reflectance parameters. The Torrance-
Sparrow model is given as:
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where ¢ represents an observed intensity, C' is an attenu-
ation coefficient concerning the distance between a point
light source and an object surface point, Y represents the
strength of a light souce. P, is the diffuse reflectance pa-
rameter, P, is the specular reflectance parameter, o is the
surface roughness parameter which is the standard devia-
tion of a Gaussian distribution, 6, is an angle between a
light source vector L and a surface normal vector N, 4, is
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an angle between a viewing vector V and a surface normal
vector N, and 4, is an angle between a viewing vector V
and a reflection vector L', where the reflection vector is the
vector which L is mirrored against N. All vectors are nor-
malized as unit vectors.

2.2 Measurement of an object

We use a laser rangefinder (Cyberware 3030RGB) with
known positions of point light sources and a camera for ac-
quiring surface color images, as illustrated in Figure 2(a).
Figure 2(b) shows its motion during measurement. This
system can obtain registered range and surface color tex-
ture images at the same time by rotating the rangefinder and
the camera around an object, so that there is no registration
error, even when an object is measured many times. Fig-
ure 2(c) shows the illustration viewed from the top of the
device. A camera is located at X1 and a texture image is
acquired through mirrors which are located at X2 and X 3.
We assume that the camera is located at X4 virtually and
the camera looks toward the center of rotation.

2.3 Preprocessing

Generally, the noise and quantization error are included
in the range image acquired from the laser rangefinder.
There is also a problem that the surface normal is not calcu-
lated accurately around the discontinuity in the range image.
Therefore, we employ an adaptive local quadratic surface
fitting.

Firstly, the 5x5 median filter is applied to the range im-
age to remove the noise. Secondly, the quadratic surface is



locally fitted with the range image. The range image from
the Cyberware rangefinder is expressed by the cylindrical
coordinates. Each point of the range image is represented
as:

{=r(s,t)sin(s), —t, —r(s,t) cos(s)},(2)

where r, s, t are the distance from the center of rotation,
the angle of rotation, and the height along the rotation axis,
respectively.

The unit normal vector is given as follows:
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where r,, r, are gradient components of the range image
(s, t). This gradient is computed using the following local
surface fit:

P(s,t) = as+ bt +est+ds+et+f,  (4)

Coefficients a ~ f are determined by minimizing the
following equation using the range data »(s, ¢) and Equation

(4).

2 2

Z Z{r(s—i—u,t—l—v)—

u=—2v=-2

error(s,t) =
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where u, v are local coordinates in a 5 x 5 window. In our
approach, selected local quadratic surface fit is achieved by
using the Yokoya-Levine operator [14]. In [14], the best
window is selected among 25 possible windows which in-
clude the point (s, ¢) to estimate the coefficients a ~ f at
(s,t). The best window provides the minimum fitting error
in Equation (5).

2.4 Selection of light source

To densely estimate non-uniform reflectance parameters
independently, it is required to observe each pixel under
three different lighting conditions: One for observing only
the diffuse reflection component to determine one unknown
parameter P; and others for observing both the diffuse and
specular reflection components to acquire two unknown pa-
rameters P, and o. Therefore, in the present experimental
setup, multiple positions of a light are determined among
60 possible positions prepared around the laser rangefinder
and these are arranged with 5 vertically and with 12 hori-
zontally at the interval of 5 cm as shown in Figure 3. The
position of a camera is calibrated in advance by measuring
a box whose size is known. The position of a light souce
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Figure 3. Multiple possible light source posi-
tions.

is calibrated based on the distance from the center of rota-
tion in world coordinates. When optimum light positions
are selected, a single light is attached at selected possible
positions in turn. Therefore, the calibration of brightness
among multiple lights is not needed.

Let I, be a color image which is to be obtained with a
possible light position p (p = 1,---,60) and consists of
n pixels (ip1, - - -, ipn ), Where i, means a color intensity,
D,, be the number of pixels which include only the diffuse
reflection component in 7, and .S, be the number of pixels
which include the specular reflection component strongly in
I,.
First, the following conditions are examined for each
pixel in the object surface texture under each light position

p.

o Measurability of light reflection
o Measurability of only diffusereflection
o Measurability of strong specular reflection

Second, the light positions p and ¢ which satisfy D, =
Maxz(D+,---, Dgp) and S; = Maxz(S1,-- -, Seo0) are se-
lected. In the next light source position selection, the posi-
tion which satisfies the same condition is selected among
the rest except for light source positions decided so far.
Then, m light positions are selected to densely estimate
reflectance parameters. The selections of positions are re-
peated until almost all pixels are observed once for only the
diffuse reflection component and twice for the strong spec-
ular reflection component.

We introduce a threshold ¢4, i.e., the ratio of the mea-
surability of both reflection components to stop the process
of selecting light positions. With respect to determining the
threshold th, we judge the ratio of the measurability of the
specular reflection with all possible positions. This ratio
is a limit of measuring the specular reflection component.
Using the threshold, we can terminate the light selection
process in the case that the ratio of measurability of specu-
lar reflection component cannot increase more, even if the
number of positions of light source is increased. In such
a way, reflectance parameters can be efficiently estimated
almost the whole object surface using a limited number of
texture images.
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24.1 Measurability of light reflection

In order to measure the light reflection at a specific point of
the object surface, the point on the surface must be observ-
able from the camera position. Additionally positional re-
lationship among the camera, the point and the light source
must satisfy the following conditions.

(Vk ~Nk) >0, (ka 'Nk) > 0, (6)

where Vi, L, and Ny, are the viewing direction, the light
source direction, and the surface normal at the &-th pixel,
respectively. Note that the viewing direction V; and the
surface normal N, are independent of the light source po-
sition p. Even when the above equations are both satisfied,
there is a possibility that a shadow is casted on the pixel.
In other words, a point on the object may be covered by a
shadow casted by light source p. This can be judged by an
existing technique[4].

2.4.2 Measurability of diffusereflection only

When the k-th pixel consists of only the diffuse reflection,
the reflection vector L' ;. satisfies the following equation.

6, = cos_l(Vk . L;,k) > Oina, ()

where 8,1 is a threshold angle between V, and L;k.
Equation (7) implies that only the diffuse reflection com-
ponent is observed if @, is greater than d,;; as illustrated in
Figure 4. When this condition stands and the pixel is not in
a shadow, the pixel is judged to have diffuse reflection only
and is counted in D,,.

2.4.3 Measurability of strong specular reflection

When k-th pixel includes the specular reflection strongly,
the reflection vector L' ;. satisfies the following equation.

6, = cos_l(Vk : L;,k) < Oino, (8)

where 6,5- is a threshold angle between V, and L’ , . Equa-
tion (8) means that both the diffuse and specular reflection
components are observed if 8, is smaller than 8,5 as illus-
trated in Figure 5. The above condition is based on the fact
that the specular reflection is observed strongly in a lim-
ited range of a viewing angle. When this condition stands
and the pixel is not in a shadow, the pixel is judged to have
strong specular reflection and is counted in S,.

25 Estimation of reflectance parameters

Let I, 4irs be the set of pixels which are judged to con-
sist of only the diffuse reflection component with the light
position p and consist of o Pixels (ip aifr 1, ip,diff,a)
where i, 4irsx means a color intensity. Let I, p.¢s be
the set of pixels which are judged to include the specu-
lar reflection component strongly and consist of 3 pixels
(4p both, 15" Ip both,p), WHEre i, por, 1 Means a color in-
tensity. Note that there are some pixels which consist of
neither the diffuse reflection component only, nor the strong
specular reflection component in 7, ;¢ and I, por. With
respect to such a pixel, reflectance parameters cannot be es-
timated.

The diffuse reflectance parameter Py, at the k-th pixel
is estimated from the value of 4, 4; ;¢ » inthe image I, 4; ¢,
N, and L. Inorder to get the most reliable estimation, the
pixel whose angle @, is the smallest but greater than 8,1 is
selected.

The specular reflectance parameter P, and the surface
roughness parameter o}, at the k-th pixel are estimated by
solving a simultaneous equation of Equation (1) with the
value of the specular reflection component extracted from
the k-th pixels i, pors & AN ig por & IN the images I, porn
and I, poth, Ng, Lpk, Vi, and Py estimated above. In
order to get the most reliable estimation, the pixels whose
angle @, is the smallest or the second smallest and is smaller
than 8,,-, are selected.

3 Experiments

In our experiments, a measured object is a plastic doll
and exibits non-uniform surface reflectance as shown in
Figure 6(a) and is assumed not to have interreflections. We
fix some parameters as ;51 = 60°, 650 = 207, th = 80%.
The proposed method of selecting positions of the light
source determined 12 light source positions for the object.
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Figure 6. A measured object and estimated reflectance parameters.
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Figure 6(b) illustrates the diffuse reflectance parameter
estimated all over the object surface. Figure 6(c) is the spec-
ular reflectance parameter. This image clearly shows that
the specular reflectance parameter of the doll’s beak and
leg are different from the rest. Actually, the beak and legs
are highly reflective as in Figure 6(a). Figure 6(d) shows
the surface roughness parameter with gray-scale where the
largest value is coded as white. This image means that
the smaller the value is, the smoother the object surface
is. Figure 6(e) shows the ratio of pixels where specular re-
flectance and surface roughness parameters are computed.
The black part means that both parameters are not directly
estimated. Non-uniform specular reflectance and surface
roughness parameters were estimated without interpolation
for 83.46% of the surface. Note that there is a part where
reflectance parameters cannot be estimated. These parts are
linearly interpolated.

Figure 7 illustrates the measurability of both reflection
components with respect to the number of light sources.
Note that the horizontal axis is represented until 20, since
these graphs are stable even if all possible positions are
used. In Figure 7(a), with respect to the diffuse reflectance
parameter, when the number of selected light source posi-
tions is 5, the ratio of the measurability of the diffuse reflec-
tion component is 100%. In Figure 7(b), as for the specu-
lar reflectance and the surface roughness parameters, even
when the object is measured with all possible positions, the
ratio of the measurability of the specular reflection compo-
nent is 83.53%. In our method, the ratio of measurability of
the specular reflection component is 83.46% with automat-
ically selected 12 light source positions. Since this figure is
comparable to that with all possible light source positions,
the experiment shows that the proposed method is efficient.

Figure 8(b) and (c) show results of merging the virtual-
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Figure 8. Merging a virtualized object into a real image.

ized object into a real image. The real illumination condi-
tion is modeled by light sources on a geodesic dome sur-
rounding the object as shown in Figure 8(a). Virtual light
sources are uniformly spaced on the geodesic dome and
these brightness are the same. The number of virtual lights
is 42. Because surface reflectance parameters are estimated
densely, the virtualized object is represented without a feel-
ing of wrongness. Frame rate is 3.2 fps on a Pentium I11
1GHz PC. Therefore, if an efficient rendering method is
achieved, the virtualized object can be merged into real
world in real time.

4 Conclusions

In this paper, we have proposed a new method of densely
estimating non-uniform reflectance properties for almost
the whole object surface by using the laser rangefinder for
virtualizing real objects. In our approach, multiple light
source positions around the laser rangefinder are automati-
cally selected, so that diffuse and specular reflection com-
ponents are observed densely. The experiments have shown
that the proposed method is useful for estimating the re-
flectance parameters of objects which exhibit non-uniform
surface reflectance. In the future, we will investigate a
method to consider interreflections all over the object sur-
face. Moreover, we have to automatically estimate real il-
lumination conditions for merging virtualized objects into
real images for mixed reality applications.
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