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Abstract

This study proposes a new factorization method for
shape and motion recovery. In past, the fourth greatest sin-
gular value of the measurement matrix was ignored. But
when noise is larger enough so that the fourth greatest
singular value can not be ignored, it would be difficult
to get reliable results by using the traditional factoriza-
tion method. In order to acquire reliable results, We start
with adopting an orthogonalization method to find a matrix
which be composed of three mutually orthogonal vectors.
By using this matrix another matrix can be obtained. Then,
the two expected matrices which represent shape of object
and motion of camera/object, can be obtained through nor-
malization. This study also conducts several experiments to
discuss the feasibility of the proposed method.

1. Introduction

Much attention has been put on computing the 3-D shape
and motion from a long sequence of images during the last
few years. Previous approaches for solving this problem
usually consider: 1) whether the camera is calibrated or not,
2) whether a projective or an affine model is used [8][10][2].

Among them, Tomasi and Kanade [8] developed a robust
and efficient method for accurately recovering the shape
of object and motion of camera/object from a sequence
of images under orthographic projection, called factoriza-
tion method. The factorization method has been believed
to be possible under linear approximations of imaging sys-
tem and without camera calibration. Lately, the original
factorization method have been extended to scaled ortho-
graphic, paraperspective projection [4] and perspective pro-
jection [9]. However, in most cases they all start with the
three greatest singular values acquired by the Singular Value
Decomposition (SVD) technique [5] to factor the measure-
ment matrix into two matrices. Then, by normalizing the

two matrices the expected two matrices which represent ob-
ject shape and camera motion is obtained.

Unfortunately, when the image noise is larger enough so
that the fourth greatest singular value can not be ignored,
the traditional factorization method might fail to reach the
accurate solution. Another problem remains in the normal-
ization procedure of the factorization method. It is because
that sometimes the unknown invertible matrix might be dif-
ficult to get [6][1].

This study concentrates on factorization method from
the Rank-Theorem perspective, and improves the step of
factoring by the SVD technique. According to the Rank-
Theorem, it would be possible to get three mutually orthog-
onal vectors from a measurement matrix [3]. Once the three
mutually orthogonal vectors were identified as one matrix,
it would be easy to take a form of 3-D linear combination
equation for obtaining another matrix whose elements are
three coefficients of 2F sets (F represents the number of
frames). Then the normalization of the two matrices can
help this study to recover object shape and camera motion,
and by using the proposed method the problem of normal-
ization can be easily solved (described in Section 4).

This paper presents a form of factorization under ortho-
graphic projection, although the form of factorization also
can be easily extend to other projective models. This study
also provides the field of structure-from-motion with three
advantages as follows: 1) It can robustly recover object
shape and camera motion even if the emergence of image
noise; 2) It can effectively solve the problem of normal-
ization; 3) Its computation is very fast due to a simple al-
gorithm. In addition, this paper also presents a series of
experiment to show the feasibility of the proposed method.

2. A Summary of Traditional Factorization
Method and Problems Description

This section presents a summary of the traditional fac-
torization method under orthographic projection, and points



out two problems: one is on the fourth greatest singular
value (described in Section 2.3), and the other is on the no-
malization (described in Section 2.4).

2.1. Orthographic Projection

Under orthographic projection model, the projection
�xfp� yfp� of the p-th point sp � �sxp � syp � szp�

T in 3D
space onto image frame f is given as follows:

xfp � iTf � �sp � tf �� yfp � jTf � �sp � tf �� (1)

where tf � �txf � tyf � tzf �
T is the vector from the world

origin to the origin of image frame f . if and jf are a pair
of unit vectors which represent x-axis and y-axis. These
equations can be rewritten as:

xfp �mT
f � sp � txf � yfp � nTf � sp � tyf � (2)

2.2. Measurement Matrix

Suppose that P feature points were tracked over F

frames of an image sequence were tracked, and their im-
age coordinates f�xfp� yfp�jf � �� � � � � F� p � �� � � � � Pg
were collected into a single �F � P measurement matrix
W .

W �

�
�������

x�� � � � x�P
� � � � � � � � �

xF� � � � xFP
y�� � � � y�P
� � � � � � � � �

yF� � � � yFP

�
�������
� (3)

Equations (2) and (3) of all points and frames can now be
combined into a single matrix equation W � MS � TeTp ,
where M is the �F � � motion matrix whose rows are mT

f

and nTf , S is the � � P shape matrix whose columns con-
sist of sp points, and T is the �F � � translation vector that
collects the projections of camera translation along the im-
age plane and ep � ��� � � � � ��T . Then a “registered” mea-
surement matrix can be developed for which the translation
vector is subtracted from W as follow:

�W �W � TeTp �MS� (4)

According to Rank-Theorem, the maximum rank of M and
S is three. Thus, the maximum rank of �W is also three.

2.3. Decomposition of Measurement Matrix with
SVD

As previously discussed, rank� �W � � � is proved. Here,
assume that rank� �W � � �. Hence, the three greatest sin-
gular values can be determined through the SVD technique,

and the fourth and its following singular values almost ap-
proaches to zero. Equation (5) displays this process. �W ,
factoring it into a product of two matrices 	M and 	S.

�W � U�
�V
T
� � U�
�V

T
�

� U�
�V
T
�

� 	M 	S� (5)

From Equation (5), motion matrix M and shape matrix S

can be defined as follows:

	M � U�

�

�

� �
	S � 


�

�

� V
T
� � (6)

First Problem: When noise corrupts the images, the
rank of �W will no longer be three. Consider a problem
when the fourth greatest singular value is not so small that
�� � ��. Therefore, adopting the SVD algorithm cannot
accurately or completely reconstruct the shape and motion.
The solution of this problem will be shown in Section 3.

2.4. Normalization of 	M and 	S

The decomposition of Equation (5) is determined as a
linear transformation. Any non-singular � � � matrix A

and its inverse could be inserted between 	M and 	S. Their
product should still equal to �W . Thus the actual motion and
shape are provided as follows:

M � 	MA� S � A�� 	S� (7)

The correct A can be determined by using two geometry
constraints that can be defined as follows :

jmf j
� � �� jnf j

� � ��
mf � nf � ��

(8)

Second Problem: In the original papers [8][4], no de-
tails of the normalization procedure or criterion to be opti-
mized were presented, and in [6][1] pointed out that many
choices are possible for this normalization and a variety of
results have been obtained depending on the choice. Indeed,
at our knowledge, matrix A might not be obtained. The
more detailed description of the reason and the solution can
be found in Section 4.

3. Decomposition of Measurement Matrix Us-
ing 3-D Linear Combination

In Section 2.2, maximum rank of �W be three was in-
troduced. Let us consider the Rank-Theorem again. The
rank of three means that there are three independent vec-
tors. Each row of �W is projected into a space which is
constructed by the three mutually orthogonal vectors. This
study attempts to find the three mutually orthogonal vectors
	S, and then to solve 	M by using the 	S and �W .
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3.1. Orthogonalization

First, three orthogonal vectors must be found or built
from �W . A good method, the Gram-Schmidt orthogonal-
ization method, can straightforwardly and efficiently find
three mutually orthogonal vectors. Rewrite the elements of
�W to be �wf � ��wf�� �wf�� � � � � �wfp�

T , and suppose that
the rank of � � P matrix �S � ��wk� � �wk� � �wk�� is three.
For getting the three orthogonal vectors �si� i � �� �� �, the
Gram-Schmid orthogonaliation method is extended as fol-
lows:

�s� � �wk� � (9)

�sj � �wkj �

jX
i��

�sTi�� � �wkj

k�si��k�
�si��� j � �� �� (10)

When the three mutually orthogonal vectors were iden-
tified as one matrix, it would be easy to take a form of 3D
linear combination equation for obtaining another matrix
whose elements are three coefficients of 2F sets (shown in
Equation (12)).

	mfk �
�sTk � �wf

k�skk�
� k � �� �� �� (11)

As a consequence, the rows of �W are the product of the
elements of �si multiplied by 	mfi in each equation (frame)
as following expression,

�wf � 	mf��s� � 	mf��s� � 	mf��s�� (12)

and as previously described, by using the proposed algo-
rithm (3DLC) �W can be also separated into 	M and 	S, as
good as Equation (5) obtained by the SVD technique.

In Section 2.3 a problem was pointed out that the fourth
greatest singular value which is very close to the third great-
est singular value (�� � ��). Let us consider again, in this
situation the rank of �W will be over three. The solution of
the problem is that even if the �� � ��, the elements of �W
can be also projected into a space which is constructed by
	S through the proposed method.

3.2. Determination of �s�

So far, how to determine the first independent vector �s�
was not described. The determination of �s� has many ap-
proaches. In general, there are three alternative ways for
solving this problem as follows: 1) Based on the general
rule, the feature points of the first frame are the most accu-
rate with respect to all other frames. The first vector could
be chosen. 2) Anyone of the exact vector �wi could be cho-
sen from �W . 3) Choosing a new vector which is obtained
by the average of �W also could be considered. In our ex-
periment, the first approach is employed.

4. Solving the Problems of Normalization

In Section 2.4, a summary of the solution of normaliza-
tion has been described. However, Equation (8) is not suf-
ficient enough for obtaining the invertible matrix A. Here,
how to find A with geometry constraints will be redescribed.

Geometry Constraint: The matrix A can be solved by
two geometry constrains, one is the length of unit vector if
and jf , and the other is the inner product of orthonormality
of axes. Here, Let B be a symmetric matrix, then the follow-
ing equations can be developed to satisfy these constraints.

�mT
f B �mf � �� �mT

f�FB �mf�F � ��

�mT
f B �mf�F � ��

(13)

From Equation (13), the matrix B can be developed as :

B � L�LT � (14)

Because W is not accurate, Equation (13) can not pro-
vide us with a solution of B. Instead, the conjugate gradi-
ent method [5] is adopted to reach a minimum value of the
Equation (15) through iterations of acquiring B value.

G�B� �
�

�

�
�

�FX
f��

� �mT
f B �mf � ��� �

FX
f��

� �mT
f B �mf�F �

�

	
A �

(15)
Then A can be determined as :

A � L�
�

�R� RRT � I� (16)

According to Equation (16), the diagonal elements �i,
i � �� �� � of � must be positive, Indeed, �i might not be
necessarily positive so that A cannot be solved. The rea-
son is why a problem described in Section 2.4 was pointed
out. Of course, the iterative process can be terminated, orB
can be redefined to develop an approximate symmetric ma-
trix by using non-linear algorithm. However it seems not
a good idea. By using the proposed method, because the
first vector�s� has 2F selection so this problem can be easily
solved that all �i are positive. The solution of this problem
is demonstrated as the following procedures:

1. Let j � �.

2. Let �s� � �wj .

3. By using Equation (10),�s� and �s� can be solved.

4. For getting another matrix 	M , Equation (15) can help
us to check �i is positive or not.

5. If ��i � � then goto (2) until all �i are positive.

In our experiment, the positive �i can be successfully ob-
tained only through one or twice selection.
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5. Experimental Results

5.1. Evaluation of Recovered Shape

The proposed factorization method is first performed
with a real image sequence for shape recovery. Experimen-
tal target is acquired by hand-held video camera. For feature
tracking, an algorithm is adopted based on [7]. At the be-
ginning, 16 points are selected in the first frame, and these
feature points are automatically tracked and kept through-
out a sequence of 16 frames shown in Figure 1. The recon-
structed shape is shown in Figure 2. The recovered shape is
very similar to real object for visual comparison.

Figure 1. The 16 fea-
ture points selected
on 1st frame.
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Figure 2. Recon-
structed shape.

To evaluate the shape recovery performance quantita-
tively, the orientations of facets in relation to one another are
shown in Table 1 which illustrates the comparison of the re-
sults of the three ways: measured angles on the actual model
(real), estimated angles with traditional method (SVD) and
estimated angles with the proposed method (3DLC).

Table 1. Quantitative evaluation of shape re-
covery.

Facets real b estimation(SVD) estimation(3DLC)
0–1 
�� 
��
�� 

����

3–4 
�� 
���
� 
�����

0–2 ��� ������ ������

3–5 ��� ������ ������

1–2 ��� ������� ������

4–5 ��� ������� ������

0–3 ��� ������ ������

1–4 �� ����� �����

2–5 �� 
��
� �����

The distance of the d�� � � � � d�� (shown in Figure 2) are
also measured. The error between real and estimated data

are evaluated by Equation (17).

� �
�

L

LX
i��






Reali

kRealk
�

Estimationi

kEstimationk





 � (17)

Through the normalization of �d�� � � � � dL�, L � ��� �
sides �� � ��, Using the proposed 3DLC method, � �
���
� can be obtained, and Using the traditional SVD
method � � ���
� can be obtained. As a result, the error
of estimated size was within the limit of 4.5 percent.

5.2. Evaluation of Recovered Motion

In relation to motion recovery, this experiment only fo-
cuses on y-axial rotation because my laboratory does not
have much equipments for measuring other motion. Figure
3 was acquired by a static digital camera, and the target is
rotated 10 degrees on each frame. The whole sequence is 6
frames. The result is shown in Figure 4 which illustrates the
comparison between the measured rotation and computed
y-axial rotation of object with the proposed method.

Figure 3. The 6 fea-
ture points selected
on 1st frame.
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Figure 4. Measured
and computed y-
axial rotation.

5.3. Analysis of Synthetic Data with Noise

This study also demonstrates the robustness of the pro-
posed method in the presence of noise. A situation is simu-
lated that �� � ��. For attempting to solve the first problem
by using the proposed method, a comparison between the
proposed 3LDC method and traditional SVD method will
be displayed on two synthetic image sequences shown in
Figure 5. One (a) is 16 feature points and whole sequence
is 70 frames, and the other (b) is 80 feature points and whole
sequence is 100 frames, and their the fourth greatest singu-
lar value are equal to the third.

In Figure 6, the results in left side were obtained with
the SVD technique and the results in right side were ob-
tained with the proposed 3DLC method. From Figure 6,
it is observed that (a) could not recover shape completely,
but (c) could recover, because that (c) has more points and
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frames than (a). Although (c) could recover, several points
were not observed on the same plane. By comparison, it is
clearly shown that (b) and (d) could accurately recover the
object shape.
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Figure 5. Trajectories of two synthetic data in
which �� � ��.
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(b)            

(c)

            

(d)

Figure 6. Reconstruction of object shape from
synthetic data shown in Figure 5: (a) and (c)
are with traditional method, and (b) and (d)
are with the proposed method.

5.4. Computational Cost

We also show a comparison of efficiency between the
proposed 3DLC algorithm and the SVD technique. For
measuring computational cost, ��� ��� � � � � and ��� fea-
ture points are automatically selected in a sequence of 100
frames (the first frame is also shown in Figure 1). The mea-
sured computational costs are shown in Figure 7. Here, the
feature tracking time is excluded. In result, the proposed
3DLC algorithm is more efficient than SVD. Especially,
when points increase, the difference between the SVD tech-
nique and the proposed algorithm becomes obvious.
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Figure 7. Comparison of computational cost.

6. Conclusions

In this paper, a new factorization method which uses 3-D
linear combination to decompose the measurement matrix
for shape and motion recovery was proposed.

From good point correspondences, the proposed method
can not only recover the object shape accurately compara-
bly to those by SVD technique, but also recover robust cam-
era/object motion. It is also demonstrated that when noise
is larger enough so that the fourth greatest singular value
can not be ignored, the proposed method can still recover
the shape robustly. Furthermore, the proposed algorithm is
very simply and fast. As a consequence, the present work
expands the application of the shape and motion recovery
from unreliable data.

Future works include: (1) extension of the method to
other projective models; (2) application of the method to
3D model construction of real complex scenes.
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