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Abstract

In this paper, a new pipeline of Structure-from-Motion for ground-view images

is proposed that uses feature points on an aerial image as references for removing

accumulative errors. The challenge here is to design a method for discriminat-

ing correct matches from unreliable matches between ground-view images and

an aerial image. If we depend on only local image features, it is not possi-

ble in principle to remove all the incorrect matches, because there frequently

exist repetitive and/or similar patterns, such as road signs. In order to over-

come this difficulty, we employ geometric consistency-verification of matches

using the RANSAC scheme that comprises two stages: (1) sampling-based local

verification focusing on the orientation and scale information extracted by a

feature descriptor, and (2) global verification using camera poses estimated by

the bundle adjustment using sampled matches.

Keywords: Structure-from-motion, bundle adjustment, aerial image,

RANSAC

1. Introduction

Structure-from-Motion (SfM) is one of the key techniques developed in the

field of computer vision and has been used in many applications, such as three-

dimensional reconstruction and image-based rendering. SfM became a widely
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used tool after implementations of the state-of-the-art SfM (Bundler [1], Visu-5

alSFM [2], etc.) were distributed by their authors. They are very useful for

processing a short image sequence. However, one significant problem in SfM,

that is, the accumulation of estimation errors in a long image sequence with km

order camera movement, remains to be solved. In this paper, to reduce accu-

mulative errors in SfM, we propose a sampling-based bundle adjustment (BA)10

scheme using the aerial images that are already available for most outdoor scenes

as external references.

Although many types of external references, e.g., 3D models [3, 4, 5, 6, 7, 8],

GPS [9, 10], and road maps [11], have been used for reducing accumulative

errors in SfM, we focus primarily on aerial images owing to their availability15

for outdoor environments. The existing methods using aerial images [12, 13,

14, 15, 16, 17, 18] are based on feature matching between given aerial images

and ground-view images taken by standard cameras. Unfortunately, existing

methods can handle only a short image sequence that does not include difficult

situations. In this paper, we tackle more difficult situations where a large num-20

ber of similar/repetitive patterns exist and/or only a few texture patterns are

available in a long image sequence, e.g., uniformly tiled ground or a road envi-

ronment, where most of the available feature points are on uniform road signs

drawn on the ground surface. Even if we can approximately limit the search

area of feature points by using GPS, which is also commonly used as an external25

reference in studies in the literature, if we depend on a local consistency check in

the feature matching stage, in principle, it is not possible to remove all incorrect

matches for a long image sequence because of the existence of repetitive and/or

similar patterns.

In order to overcome this problem, we remove incorrect matches caused by30

repetitive/similar patterns by introducing a RANSAC framework [19] into both

the feature matching and BA stages that verifies the local and the global con-

sistencies among estimated camera poses and matched features. Figure 1 shows

the flow of the proposed method. For local feature matching, in this study, we

assume that we can approximately limit the area used for feature matching, by35
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Figure 1: Flow of the proposed method.

using, e.g., GPS embedded in mobile devices. Figure 2(a) shows an example of a

conventional feature matching result obtained by using a common combination

of SIFT [20] and RANSAC for an aerial image containing many repetitive pat-

terns. Even after limiting the search area and rectifying the ground-view image

to facilitate matching, incorrect matches (blue dashed lines in the figure) are40

often erroneously determined to be inliers. In this scene, SIFT finds 158 tenta-

tive matches of which only 5 are correct. In order to successfully determine the

incorrect matches as outliers, we modify the verification process of RANSAC so

that it additionally checks the consistencies of matches according to the scale

and orientation information from feature detectors and descriptors.45

Although it is expected that most of the incorrect matches will be deter-

mined as outliers by this local verification method, some incorrect matches may

simultaneously satisfy the consistency in the position, scale, and orientation,

because the ground textures have similar structures. Figure 2(b) shows an ex-

ample in which incorrect matches (blue dashed lines in the figure) are found50

even when the consistency check for scale and orientation is used. To remove

these remaining incorrect matches, in the BA stage, we verify the global consis-

tency of matches and poses for all the images using the RANSAC framework.

More precisely, camera poses are first estimated by the BA scheme using sam-
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Figure 2: Two-stage geometric verification by RANSAC.
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pled matches as external references (red line and triangle in the figure), and55

the consistency between the estimated poses and each match is then checked.

After iterating sampling and estimation, the best samples that maximize the

number of consistent frames are selected as inlier frames in which it is expected

that incorrect matches will be excluded. When good feature matches have been

obtained through the two-stage verification, the camera poses are refined by the60

BA scheme using the feature matches as external references to remove accumu-

lative errors.

It should be noted that the proposed method assumes that an SfM result for

ground-view images is given as an initial guess for the BA. The camera model for

an aerial image can be approximated by the orthographic camera model, and its65

image plane is perpendicular to the gravity direction. In addition, approximate

positions and gravity directions of the ground-view images are given by external

sensors. An easy method for obtaining this information, which is employed in

this study, is to use the GPS and gyroscope sensors embedded in most recent

smartphones. It should be noted that this paper is an extended version of a70

previous conference paper [21]. We have added experiments using a roadway

and an in-depth discussion in this version.

2. Related Work and our Contributions

To reduce accumulative errors in SfM, loop closing techniques [22, 23, 24]

are sometimes employed. When the loops have been detected, the accumula-75

tive errors can be reduced in the BA stage. In an approach related to loop

closing, Cohen et al. [25] exploited symmetries, which often exist in man-made

structures, instead of loops. Although these techniques are effective for some ap-

plications, it is essentially difficult for these techniques to remove accumulative

errors for a general image sequence without either loops or symmetry.80

To reduce accumulative errors in an image sequence captured by a moving

camera, several kinds of external references have been used. These external

references can be classified into 3D models [3, 4, 5, 6, 7, 8], GPS [9, 10], road
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maps [11], and aerial images [12]. In studies in the literature, many types

of 3D models, including 3D points [3, 4], wire-frame models [5], plane-based85

models [6, 7], textured 3D models [8], and digital elevation models (DEM) [7]

were employed as references. One disadvantage of 3D-model-based methods

for large outdoor environments is that time consuming manual intervention is

required to create the 3D models. Although some models are already available

in the GIS database [6, 7], the available areas are still limited to large cities.90

One method to create 3D models without much manual intervention is to use

3D reconstruction techniques, e.g., SfM and multi-view stereo [26]. However,

the reconstructed models are also affected by accumulative errors caused by SfM

itself.

In contrast to 3D models, GPS, road maps, and aerial images are already95

available for most outdoor scenes around the world. Yokochi et al. [9] and Lhuil-

lier [10] proposed extended-BA using GPS that minimizes the energy function

defined as the sum of reprojection errors and a penalty term of GPS. This

method can globally optimize camera poses and reduce accumulative errors by

updating poses so as to minimize the energy function. However, the accuracy100

of this method is directly affected by errors in GPS positioning, which easily

grow to several tens of meters in urban areas when using the GPS embedded

in smartphones. Brubaker et al. [11] proposed a method that uses commu-

nity developed road maps. This method can reduce accumulative errors by

matching the trajectory from SfM to road maps, unless there are ambiguities105

in the matched trajectories (e.g., straight roads and Manhattan worlds). Pink

et al. [12] fused sparsely obtained camera poses from aerial images into SfM by

using the Kalman filter. However, unlike BA-based fusion, global optimization

is difficult in the Kalman filter-based approaches.

There exist several methods that use aerial images as one of input data of110

SfM [27] or RGBD-SLAM [28]. Shan et al. [27] employed oblique aerial im-

ages as additional inputs of SfM for reconstructing the regions that are not

covered by ground-view images. One challenge in our case is the employment

of top-view aerial images as an external reference in which common feature
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matching method used in [27] cannot give reasonable matches. For obtain-115

ing matches between top-view aerial images and ground-view images, Forster et

al. [28] utilized dense depth maps obtained from perspective aerial images in the

feature matching stage. Although feature matching methods from widely differ-

ent viewpoints [29, 30] also work in the case depth/3D information is available,

unfortunately, the information is not always easy to be obtained from commonly120

available orthographic aerial images.

On the other hand, some methods estimate camera poses directly from aerial

images [13, 14, 15, 16, 17, 18]. There are two types of aerial images: perspective

and orthographic. Bansal et al. [13] proposed a method for estimating camera

poses by matching façades in the ground-view input image with perspective125

aerial images. Although perspective aerial images are available on Google Maps

and Microsoft Bing Maps, the available areas are still limited to large cities.

Most methods using aerial images employ the orthographic aerial images.

These methods can be classified into learning- [14] and feature-matching-based [15,

16, 17, 18]. Lin et al. [14] proposed a method based on the relationship of the130

appearance between ground-view and aerial images learned through commu-

nity photos with position information. Although this method estimates camera

positions from large regions (1,600 [km2] in their experiments), camera posi-

tions can be estimated only approximately. Other methods match the building

edges [15, 16] or feature points [17, 18] of ground-view and aerial images. One135

of the difficulties of this approach is finding good matches for all the images of a

video sequence under severe conditions for feature matching. Toriya et al. [17]

and Noda et al. [18] relaxed the problem by stitching multiple ground images

for feature matching. Toriya et al. [17] also proposed a robust feature match-

ing procedure that compares the orientation and scale of each match with the140

dominant orientation and scale. Unfortunately, existing feature matching-based

methods, which are expected to achieve highly accurate pose estimation, do not

have the capability to handle a long image sequence because of the strong de-

pendence on matching information given only for a local region. To the best of

our knowledge, no method exists that handles feature matches between an aerial145
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image and ground-view images in the global optimization stage (BA stage).

As mentioned in the previous section, we tackle difficult situations for feature

matching, where a large number of similar patterns exist in a large-scale outdoor

environment. The main contributions of this paper are summarized as follows:

• BA-based global optimization that uses feature matches between ground-150

view and aerial images.

• Two-stage geometric verification for removing incorrect matches

– Local verification that focuses on the transformation between aerial

image and each ground-view image and considers in particular the

orientation and the scale information extracted by a feature descrip-155

tor,

– Global verification that focuses on camera poses estimated using the

BA scheme with sampled matches.

3. Feature Matching between Ground-view and Aerial Images

This section describes a method to find good matches between an aerial160

image and each ground-view image with local verification. As shown in Fig. 3,

the method is composed of three processes: (1) ground-view image rectification,

(2) feature matching, and (3) local geometric verification by RANSAC.

3.1. Ground-view image rectification and feature matching

Before finding matches, as in existing methods [17, 18], we rectify the ground-165

view images so that the texture patterns are similar to those of the aerial image.

To achieve this, we use homography calculated from the gravity direction in the

camera coordinate system. More precisely, we map the ground image to a plane

that is perpendicular to the gravity direction. To estimate the gravity direction,

the vanishing points of parallel lines [31] or a gyroscope sensor can be used. Since170

even a cheap gyroscope sensor provides an accurate gravity direction, we used a

gyroscope embedded in a smartphone in the experiment described below. Even
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if the patterns cannot be perfectly rectified because of the irregularity of the

ground plane, it is expected that the chance of obtaining correct matches will

be increased by using this rectification process.175

A region in an aerial image for feature matching is then determined. We first

determine a certain size of the region the center of which is the GPS position,

which includes measurement errors. In the experiment, the size is set to 50

[m] × 50 [m]. Tentative matches are then found between the rectified ground

image and the limited region in the aerial image using a feature detector and a180

descriptor. Although we employed SIFT [20] in the experiment because of its

robustness, any feature operators that output scale and orientation information

can be employed in our framework. It should also be noted that a large GPS

error may result in correct feature points outside the limited region. Even in

this case, incorrect matches are automatically excluded by applying two-stage185

RANSAC with a geometric consistency check.

3.2. Local geometric verification

Tentative matches often include many incorrect matches. The rate of in-

correct matches sometimes reached over 95% in our experiment, even if the

search range for matching was correctly set. In order to decrease the number of190

incorrect matches included in the tentative matches, we apply local geometric

verification by using RANSAC with a consistency check of the orientation and

scale of texture patterns, as shown in Fig. 4.

Although final camera poses are estimated in 6-DOF with BA, to achieve

stable matching between rectified ground-view images and the aerial image, we

use a 3-DOF similarity transform, which is composed of scale s, rotation θ, and

translation τ , as the model in RANSAC. In a standard RANSAC procedure,

tentative matches of minimum number required for estimating the similarity

transform (s, θ, τ ), which are two matches in this case, are randomly selected

first. The number of inlier matches that satisfy the following condition is then

counted.

|ak − (sR(θ)gk + τ )| < dth, (1)
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where ak and gk are the 2D positions of the k-th match in the aerial image

and the rectified ground-view image, respectively. R(θ) is the 2D rotation ma-195

trix with rotation angle θ, and dth is a threshold. After iterating the random

sampling process, the trial with the largest number of inlier matches is selected.

The problem here is that the distance-based single criterion described above

cannot successfully find correct matches when there exists a huge number of

incorrect matches. In order to achieve more robust matching, we modify the

criterion commonly used in RANSAC by adding a consistency check for orienta-

tion and scale information extracted from a feature descriptor. More precisely,

we select the matches that simultaneously satisfy Equation (1) and the following

two conditions as inliers in RANSAC procedure.

max

(
sgk · s
sak

,
sak

sgk · s

)
< sth, (2)

aad(θgk + θ, θak) < θth, (3)

where (sak, sgk) and (θak, θgk) represent the scale and orientation of feature

points for the k-th match on the aerial image and the rectified ground-view
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image, respectively. The function ‘aad’ returns the absolute angle difference200

in the domain [0◦, 180.0◦]. sth and θth are the thresholds for scale and angle,

respectively. By using the additional consistency check, the feature matches

are strictly verified, and it is expected that most of the incorrect matches will

be removed as outliers. It should be noted that even though we employ a 3-

DOF model in RANSAC in this stage, as shown in the experiment in Section 5,205

feature points on slanted ground that violate the 3-DOF model are successfully

matched, since we can relax each threshold by simultaneously checking three

criteria in this stage.

4. Sampling-based Bundle Adjustment

As shown in Fig. 2(b), some frames contain incorrect matches even after210

local geometric verification because of repetitive similar patterns. In this study,

as a global verification stage, we propose a new sampling-based BA scheme to

find the frames that contain incorrect matches.

4.1. Definition of energy function

In order to use the matches between ground-view and aerial images in BA

as external references, as shown in Fig. 5, the energy function E is newly

defined for this problem as the sum of reprojection errors for both ground-view

(perspective) images Φ and the aerial (orthographic) image Ψ:

E({Ri, ti}Ii=1, {pj}Jj=1) = Φ({Ri, ti}Ii=1, {pj}Jj=1) + ωΨ({pj}Jj=1), (4)

whereRi and ti represent 3D rotation and translation from the world coordinate215

system to the camera coordinate system for the i-th frame, respectively. pj is

a 3D position of the j-th feature point, I and J are the number of frames and

feature points, respectively, and ω is a weighting coefficient that balances Φ

and Ψ. Since the energy function is non-linearly minimized in BA, good initial

values of parameters are required to avoid local minima. Before minimizing the220

energy function, we fit the parameters estimated by SfM to the GPS positions
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graphic) image.

using a 3D similarity transform. In the following, two energy terms associated

with reprojection errors Φ and Ψ are given in detail.

4.1.1. Reprojection errors for ground-view images

In our method, camera poses and 3D positions of the feature points estimated

by BA dynamically move in the world coordinate system, which is set on the

aerial image coordinate, because of the tension from the external references

(matches on the aerial image). Because of this dynamic camera movement, the

3D positions of the reference points on an aerial image frequently go behind

the camera. However, the commonly used reprojection errors for the pinhole

camera model cannot deal with projections from behind the camera. In this

study, instead of the commonly used squared distance errors on the image plane,

we employ the following angular reprojection error that is employed in SfM for
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omnidirectional cameras.

Φ({Ri, ti}Ii=1, {pj}Jj=1)=
1∑I

i=1 |Pi|

I∑
i=1

∑
j∈Pi

Φij , (5)

Φij= ̸

xij

fi

,

Xij

Zij

2

+ ̸

yij

fi

,

Yij

Zij

2

, (6)

(Xij , Yij , Zij)
T = Ripj + ti, (7)

where Pi is a set of feature points detected in the i-th frame. Function ̸ returns225

an angle between two vectors, (xij , yij)
T is a detected 2D position of the j-th

feature points in the i-th frame, and fi is the focal length of the i-th frame. By

this definition, the energy becomes large when projections behind the camera

occur.

Here, as mentioned in [32], the convergence of energy is very poor with an an-230

gular reprojection error Φ̂ij = ̸ ((xij , yij , fi)
T, (Xij , Yij , Zij)

T)2. We then split

the angular reprojection error into xz and yz components in order to simplify

the Jacobian matrix of E required by non-linear least squares methods, such as

the Levenberg-Marquardt method. The first and second terms of Φij do not

depend on the y and x components of ti in this definition. We experimentally235

confirmed that this splitting largely affects the convergence performance.

4.1.2. Reprojection errors for aerial image

The reprojection errors for the aerial (orthographic) image are defined as

Ψ({pj}Jj=1)=
1∑

i∈M |Ai|
∑
i∈M

∑
j∈Ai

|aj−pr(pj)|2 , (8)

where M is a set of frames in which matches between ground-view and aerial

images are found, Ai is a set of feature points that are matched to the aerial

image in the i-th frame, and aj is the 2D position of the j-th feature point in the240

aerial image. The function ‘pr’ projects a 3D point onto the xy plane (aerial im-

age coordinate system). Although the height of the 3D points is not affected by

this term, the remaining 2D positions are constrained to their positions on the
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aerial image. These constraints are effective for reducing the accumulative er-

rors through simultaneously minimizing both the perspective and orthographic245

reprojection errors in the BA.

4.2. Global geometric verification

This section describes a RANSAC scheme introduced into BA for global

geometric verification. Since the matches remaining after local verification are

consistent in each frame, we judge inliers in a frame-wise manner. First, we

randomly sample n frames from the frames that passed local geometric verifi-

cation and execute BA using the matches in the sampled frames, i.e., using a

set of sampled frames M ′ instead of M in Equation (8). We then check the

consistency between the camera poses obtained by BA and each frame that in-

cludes feature matches. More precisely, we count the number of inlier frames

that satisfy the condition

average
j∈Ai

(αij) < αth, (9)

where αij is an angular reprojection error of the j-th feature point on the aerial

image coordinate system, as shown in Fig. 6, and αth is a threshold. Here, αij

is computed as

αij= ̸
(
aj−pr(−RT

i ti),pr
(
RT

i (xij , yij , fi)
T
))

. (10)

After iterating the random sampling process at given times, the trial that has

the largest support is selected. Finally, camera poses are refined by executing

BA again using the feature matches in the selected inlier frames.250

In the experiments described below, the threshold αth is experimentally de-

termined. It should also be noted that biased sampling, where samples are close

to each other, frequently yields an unstable result in RANSAC. Thus, we mod-

ify the random sampling process of frames so that the distances between the

average positions of matches on an aerial image are larger than threshold lth.255
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Figure 6: Criterion used in global geometric verification.

5. Experiments

To validate the effectiveness of the proposed method, we quantitatively eval-

uated the performance of the proposed BA with two-stage geometric verification

using two datasets: (1) data captured by a hand-held sensor unit on textured

ground for Experiment 1, and (2) data captured by a car-mounted sensor unit260

on a roadway for Experiment 2. In the following, we first describe the setup

used for both the experiments. The results of each experiment are then detailed.

5.1. Experimental setup

We used an iPhone 5 (Apple) as a sensor unit including a camera, GPS,

and a gyroscope. The GPS and gyroscope measured the position at 1 [Hz] and265

the direction of gravity for every frame, respectively. We also used an RTK-

GPS (Topcon GR-3, 1 [Hz]; horizontal positioning accuracy in the specification

sheet is 0.01 [m]) to obtain the ground truth positions. The positions obtained

from the GPS data were assigned temporally to the nearest frame. As exter-

nal references, we downloaded the aerial images covering the area used in the270
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experiments from Google Maps [maps.google.com], whose coordinate system is

associated with the metric scale.

To obtain the initial values for the BA, we employed VisualSFM [2] as a state-

of-the-art SfM implementation. For non-linear optimization, we used Ceres-

Solver [33]. We experimentally set dth = 2 [pixel], sth = 2 and θth = 40 [◦] for275

the feature matching, and ω = 10−5 and αth = 5.0 [◦] for the BA.

5.2. Quantitative evaluation using data captured on textured ground (Experi-

ment 1)

In this experiment, we used video images (640 [pixel] × 480 [pixel], 2,471

frames, 494 [s]) captured by a hand-held sensor unit on a textured ground. As280

shown in Fig. 2, a large number of similar patterns exist on the ground in

this environment. Figure 7 shows an aerial image covering the area used in the

experiments (approximately 1 [pixel] = 5.2 [cm]).

5.2.1. Effect of local verification

In this experiment, we first evaluated the effectiveness of the proposed fea-285

ture matching process including local geometric verification by RANSAC using

the scale and orientation check described in Section 3. Here, we tested local ver-

ification with variable thresholds sth and θth. To count the number of correctly

matched frames, we first selected frames that had four or more inlier matches

after local verification. From these frames, we manually selected the frames290

whose matches were correct.

Figure 8 shows the rate and the number of frames in which all the selected

matches were correct. It should be noted that sth = ∞ and θth = 180.0 [◦], which

means that the orientation check and scale check were disabled, respectively.

The results indicate that the rate was significantly improved through the scale295

and orientation check. We can also confirm that small values of sth and θth

tend to increase this rate. However, the number of correctly matched frames,

which is important for optimizing camera poses using BA, was decreased when
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Figure 7: Experimental environment and results (Experiment 1).
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using small thresholds. In the following experiments, we then employed feature

matches with sth = 2 and θth = 40 [◦].300

Figure 9 shows the effects of the scale and orientation check for two sampled

images. In both cases, local verification without a scale and orientation check

could not select any correct matches, whereas the proposed local verification

with a scale and orientation check was able to do so. However, as shown in

Fig. 10, incorrect matches still remained even when we used both the scale and305

orientation check, because similar patterns exist.

5.2.2. Effect of global verification

We then evaluated the effectiveness of global geometric verification by sampling-

based BA, as described in Section 4. In this stage, frames with GPS data were

sampled (650 out of 2,471 frames) and used for the BA to reduce the compu-310

tational time. As external references, we used the frames and feature matches

selected through the orientation and scale check described in the previous sec-

tion. Here, 10 out of 14 frames had correct matches.

We first investigated the influence of weight ω for balancing two types of

reprojection errors in the energy function of the BA. Figure 11 shows the average315

position errors produced by the BA with variable weight ω using all the correctly

matched frames. This result demonstrates that position errors did not largely

depend on weight ω, except when small values were applied. In the experiments

described next, we employed ω = 10−5.

We next evaluated the proposed sampling-based global verification in terms320

of its capability to select frames with correct matches. Here, we experimentally

set n = 4 and lth = 25 [m], and tested 100 trials. Figure 12 shows the number of

inlier frames produced by global verification with variable threshold αth. The re-

sults demonstrate that incorrectly matched frames were selected as inliers when

large values of αth were used and that the number of correctly matched frames325

decreased when small values of αth were used. In the experiments described

next, we employed αth = 5.0 [◦].

We also checked the number of inlier frames selected in each trial with αth =
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Angle [ ] Scale

334.02 0.85 

332.84 0.91 

330.88 0.84 

352.56 0.43 

156.73 1.06 

Similarity transform

SIFT keypoints

(a) Without orientation and scale check

Angle [ ] Scale

158.71 1.19 

Angle [ ] Scale

159.92 1.11 

154.96 0.89 

154.24 1.25 

148.45 1.12 

Similarity transform

SIFT keypoints

(b) With scale check, with/without orien-

tation check

Angle [ ] Scale

66.47 0.07 

Angle [ ] Scale

164.35 0.86 

334.38 0.82 

334.94 0.78 

329.40 0.68 

171.96 0.46 

Similarity transform

SIFT keypoints

(c) Without orientation and scale check

Angle [ ] Scale

336.34 0.96 

Angle [ ] Scale

342.27 0.90 

338.34 0.90 

339.67 0.73 

341.82 0.77 

333.08 0.77 

Similarity transform

SIFT keypoints

(d) With orientation check, with/without

scale check

Figure 9: Selected inliers for example images (Experiment 1). The solid and dashed lines rep-

resent correct and incorrect matches, respectively. The relative angle and scale of the matched

feature points are shown in the bottom right hand table together with the corresponding line

colors. The green points are the ground truths of the camera positions. Note that local

verification with/without the orientation check for (b) and scale check for (d) gave the same

results.
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Similarity transform
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Similarity transform
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Figure 10: Examples of incorrect matches by local verification using orientation and scale

check (Experiment 1). The interpretations of the symbols are the same as in Fig. 9.
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Figure 11: Relationship between weight ω and average horizontal position error (Experiment

1).

22



0

2

4

6

8

10

0 2 4 6 8 10 12 14 16 18 20

N
u
m
b
er

o
f
fr
a
m
e

αth [◦]

Correctly matched frame selected as inlier

Incorrectly matched frame selected as inlier

Figure 12: Number of inlier frames with variable threshold αth (Experiment 1).

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10

N
u
m
b
er

o
f
tr
ia
ls

Number of inlier frames

Sampled frames without incorrect matches

Sampled frames with incorrect matches

Figure 13: Number of trials and inlier frames derived by each trial (Experiment 1).

5.0 [◦]. Figure 13 shows the number of trials and inlier frames derived by each

trial. In this figure, it can be seen that the sampled frames without incorrect330

matches tend to increase the number of inlier frames. This result demonstrates

that the criterion of global verification is effective. We also confirmed that the

trials that derived the largest number of inlier frames successfully selected all

of the correct matches.

In order to validate the effectiveness of the global verification and the use of335

external references on an aerial image, the results of the following three methods

were compared.
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• BA without references [2]

• BA with references without global verification

• BA with references and global verification (proposed method).340

Figures 7 and 14 show the estimated camera positions and horizontal position

errors for each frame, respectively. Since the BA without references cannot esti-

mate absolute camera poses, we fitted the camera positions estimated using SfM

to the ground truths through a similarity transform. These results demonstrate

that the camera positions estimated through the BA without references were345

affected by the accumulative errors. The BA without global verification was

affected by the incorrect matches. The proposed BA with global verification

reduced the accumulative errors. It should be noted that, at the end of the

sequence, the accumulative errors still remained, because the ground was not

level and thus no matches were found.350
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5.3. Quantitative evaluation using data captured on roadways (Experiment 2)

In this experiment, we used video images (640 [pixel] × 480 [pixel], 7,698

frames, 396 [s]) captured by a car-mounted sensor unit on a roadway. Figure 15

shows an aerial image covering the area used in the experiments (approximately

1 [pixel] = 4.5 [cm]). It should be noted that we manually excluded frames355

captured when the car was stopped at a traffic light.

We first applied the feature matching process, including local verification

with a scale and orientation check. After selecting the frames with 4 or more

inlier matches, we obtained 37 frames (28 frames without and 9 frames with

incorrect matches). We then applied global verification using frames with GPS360

data (739 out of 7,698 frames). Here, we experimentally set n = 7 and lth = 100

[m]. After 100 trials, the trial that derived the largest number of inlier frames

selected 22 frames as inliers (19 frames without and 3 frames with incorrect

matches) and 15 frames as outliers (9 frames without and 6 frames with incor-

rect matches). Figures 16 and 17 show example frames selected as inliers and365

outliers, respectively. As shown in Figure 16, the frames with incorrect matches

were selected as inlier frames by global verification because the positions of the

incorrect matches on the aerial image were close to the correct positions. Figures

15 and 18 show the estimated camera positions and horizontal position errors for

each frame, respectively. Although the frames with incorrect matches still re-370

mained even when using two-stage geometric verification, the proposed method

clearly reduced the accumulative errors. However, as can be seen in Fig. 18,

the accumulative errors are still large around the 6,000th frame because there

was only a small number of matches.

6. Discussion and Limitations375

This section discusses the way of parameter setting and the limitations in

the feature matching process. The proposed method has some parameters which

should be manually determined. Generally, it is not easy to find the best pa-

rameters for individual dataset. However, it should be noted that, as shown
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RTK-GPS (Ground truth)
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(selected as inlier by global verification)
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Figure 15: Experimental environment and results (Experiment 2).
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(a) (b)

(c) (d)

Figure 16: Examples of frames selected as inliers by global verification (Experiment 2). The

solid and dashed lines represent correct and incorrect matches, respectively.

(a) (b)

Figure 17: Examples of frames selected as outliers by global verification (Experiment 2). The

dashed lines represent incorrect matches.
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Figure 18: Horizontal position error in each frame (Experiment 2).

in Figs. 8, 11 and 12, most of parameters in the proposed pipeline have wide380

range of sweet spots where sub-optimal results can be obtained. We thus have

employed common values for most of parameters in two different experiments

despite characteristics of the datasets are quite different. These results imply

that parameter values used in the experiments may be valid for other datasets.

Parameters for which we did not use common values in the experiments are385

the number of samples n and the minimum distance between samples lth used

in the global geometric verification. These parameters depend on the number

of matches, the ratio of incorrect matches, and the scale of input data, e.g.

moving distance, distance between camera and feature point, and number of

images. With analyzing various experimental data, automatic determination390

way for these two parameters is expected to be developed in the future.

One major limitation of the proposed method exists in the feature matching

process. Since the proposed method projects a ground image to a plane that is
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perpendicular to the gravity direction, it is not easy to find correct matches in

situations where the ground is not level or not a plane. In fact, there exist a395

long slope and steps around the last frame of the dataset 1 (top right of Fig. 7)

and thus our method could not find correct matches for these regions. Matches

also cannot be obtained from texture-less ground such as roadways shown in

Section 5.3. However, as shown in these experiments, even if there exist re-

gions where the proposed method cannot obtain good matches, the proposed400

method can successfully reduce the accumulative errors only if there exist sev-

eral regions where correct matches can be found. To find more good matches

even for non-level ground, affine and/or perspective invariant features, such as

ASIFT [34] and Ferns [35], can be used with finding better homography pa-

rameters in local verification process. However, it should be noted that simply405

applying these feature operators to our pipeline will drop the accuracy for many

cases due to the increment of degrees of freedom in feature matching process.

If the scene is expected to be level for most regions, standard feature matching

operators should give better result. The development of effective way for em-

ploying affine/perspective invariant feature operators into the proposed pipeline410

is our next challenge for increasing the practicality.

7. Conclusion

In this paper, we proposed a method for removing accumulative errors in

SfM using aerial images that are already available for many places around the

world as external references. To achieve this, we proposed a new BA scheme415

that uses feature matches between the ground-view and aerial images. In order

to discriminate the correct matches among unreliable matches, we introduced

local and global geometric verification procedures provided by RANSAC. The

local verification focuses on transformation between the aerial image and each

ground-view image, considering in particular the orientation and the scale infor-420

mation extracted by a feature descriptor. The global verification focuses on the

consistency of matches and poses for all the images through a sampling-based
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BA. To the best of our knowledge, ours is the first method that uses aerial images

as external references in BA. We confirmed experimentally that the proposed

method is effective for estimating the camera poses of real video sequences taken425

in outdoor environments. However, the accumulative errors still remain when

there are no available matches during a long period of time. To find matches

in situations where the ground is not level, affine and/or perspective invariant

features, such as ASIFT [34] and Ferns [35], can be used with homography as

a geometric transformation in local verification. The proposed method requires430

several tens of hours for global geometric verification. To reduce computational

time, BA with incorrect matches should be determined and discontinued in an

early step of non-linear optimization.
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