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Free-viewpoint Image Generation-based Human

Motion Reenactment from a Single RGB-D

Video Stream∗

Fabian Lorenzo Dayrit

Abstract

Videos are invaluable for trainers demonstrating complex actions. They enable

learners to study the motion of these actions at any time. However, conventional

video is only 2-dimensional. Generally, viewers are able to compensate for the

loss of the third dimension by making good inferences about the motion of the

action. However, if some ambiguity is present in the action, the motion may

become harder to comprehend.

Free-viewpoint image generation techniques attempt to solve this problem by

allowing viewers to watch the action from any viewpoint they choose. However,

most existing free-viewpoint image generation systems also require the action to

be simultaneously captured from multiple viewpoints. Such systems require large

camera arrays and are difficult to set up.

This thesis proposes a system to generate free-viewpoint images of human

motion using a single RGB-D sensor by synthesizing viewpoints other than the one

that was originally captured. Our system is composed of two stages: capturing the

motion of a human subject’s action, and displaying a reenactment of the action,

which is a free-viewpoint rendering of the action using augmented reality. To

generate an image from a novel viewpoint, we find the most appropriate texture

among our captured frames based on the subject’s pose and viewpoint similarity

and apply this texture to a rough three-dimensional model.

∗ Master’s Thesis, Department of Information Science, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-MT1251124, March 13, 2014.
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We have implemented a prototype which runs on a mobile computer. We have

conducted a user study to determine if i) the system increases comprehension of

3-dimensional motion, ii) the system allows users to compare the reenactment’s

motion to a real human’s motion, and iii) the system has other real-world appli-

cations.

Keywords:

Augmented reality, free-viewpoint image generation, human motion capture/reenactment
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単一RGB-Dストリームに基づく

自由視点画像生成による人物動作の再現∗

Fabian Lorenzo Dayrit

内容梗概

舞踊などのように特定の動作を学習する場合,指導者の動作見本の映像記録は,

学習者がいつでもその動きを学習することが可能となることから, 極めて有用で

ある. しかし, 通常の映像は三次元の動きを二次元に投影して記録するため, 学習

者が映像のみから複雑な三次元の動きを推測することが困難な場合がある.

この問題に対して, 自由視点画像生成技術を利用することで, 学習者が任意の

視点からその動きを観測することを可能にするシステムが提案されている. これ

らのシステムは, 通常の映像では失われていた奥行方向の動きについても, 視点を

変更することにより観測可能となる. しかし, このようなシステムは多くの場合,

対象となる人物のすべての方向からの見えを記録するために複数の視点から撮影

された映像や対応する奥行マップが必要となることから, 一般の指導者や学習者

が手軽に利用することはできない.

そこで本研究では, 単一のRGB-Dセンサーのみを利用して動きを撮影するこ

とにより, 任意の視点からその動きを観測可能にするシステムを提案する. 単一

視点から撮影された映像には, 例えば対象の人物の背面からの視点の画像を生成

する場合に, テクスチャが存在しないという問題が生じる. 提案システムでは, 撮

影されたすべてのフレームから最も適切なフレームをテクスチャとして利用する

ことでこの問題を解決する.

実験では, 事前に撮影された人物動作に基づいて, モバイルデバイス上でリア

ルタイムに任意の視点の画像を生成するプロトタイプを作成し, ユーザスタディ

より提案システムの有用性を検証する.

∗ 奈良先端科学技術大学院大学情報科学研究科情報科学専攻修士論文, NAIST-IS-MT1251124,

2014年 3月 13日.
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1. Introduction

In recent years, watching and sharing videos over the Internet has become more

popular, thanks to video sharing services such as YouTube. Anyone can use

these services to share their own videos as well as explore what others have

shared. Among the types of videos shared are instructional videos, which are

videos which aim to educate the viewer. A subset of these are videos of people

demonstrating some physical action: perhaps a martial arts kick, or a difficult

dance move.

These videos are convenient because learners and instructors do not have to

be in the same room together. Anyone can watch them at any time. However,

they do have a drawback. A video holds a two-dimensional (2D) projection of the

motion that was originally three-dimensional (3D). Normally, this is fine, as we

humans can usually infer motion, even from a 2D video. If there is any ambiguity

in the video, however, it may become difficult to comprehend the motion.

Perhaps augmented reality (AR) can offer a solution. AR is the integration

of virtual elements with the real world [11]. AR applications augment a real

environment in some way in order to provide users with a more entertaining or

educational experience (e.g., [6, 7]).

Free-viewpoint image generation techniques also tackle this problem by ren-

dering the video, or a part of the video such as its subject, from an arbitrary

viewpoint (e.g., Fig. 1). However, in order to render moving scenes, most of these

systems require simultaneous capture from multiple viewpoints (Fig. 2). This

means that users must set up multiple cameras, which prevents the average user

from being able to capture scenes with the system.

Figure 1: Free-viewpoint image generation for human action [1]. A person

is rendered from arbitrary viewpoints for the purpose of generating character

animation.
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Figure 2: Examples of capturing setups for free-viewpoint image generation sys-

tems for moving scenes. Most capture from multiple cameras, such as [2] (top

row) and [3] (bottom row).

This thesis will discuss a special case of free-viewpoint image generation, fo-

cusing solely on the human subject of the video. From now on, we will refer

to such a synthesis of a moving human subject as a reenactment. As a special

case of free-viewpoint image generation, a reenactment may also be viewed from

an arbitrary viewpoint. If this viewpoint is not one of the original capturing

viewpoints, it must synthesize the most likely appearance of the subject from

the viewpoint. Finally, a reenactment must follow the recorded motions of the

subject in the video sequence.

We propose a system that uses a single RGB-D sensor to capture and record
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Figure 3: Examples of an RGB frame captured by a user (left) and a reenactment

by the proposed system (right).

a moving subject, then generates an AR reenactment to be overlaid on top of an

RGB stream (Fig. 3). In our system, a user captures and records the subject with

an RGB-D sensor, and the data is stored in a database. Upon a viewer’s request,

the motion is reenacted based on the stored data. Finally, the reenactment is

overlaid on top of the viewer’s camera.

Requiring only a single RGB-D sensor makes our proposed system easy to use.

The challenge is synthesizing a good reenactment from our single-sensor stream,

because multiple viewpoints of the subject are necessary. Our observations in this

regard are that (i) the subject’s rough 3D model can be generated based on the

depth frame and the pose of the subject in that frame, and that (ii) the subject

may, over the course of the entire recording, expose different angles of himself or

herself to the camera, which we may then use to color the rough 3D model.

This thesis is organized as follows. In section 2 we will discuss systems that are

related to our proposed system: AR learning systems, and free-viewpoint image

generation systems, with a focus on those that make use of RGB-D sensors and

human pose estimation. In section 3 we will outline and describe each section of

our proposed system in detail. We will cover capturing the motion of a subject

and rendering the reenactment. In section 4 we will go into the specifics of how

we implemented the system, including the hardware and software we used. In

section 5 we will describe our user study and discuss its results. We conclude our

thesis in section 6.
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Figure 4: The post-stroke rehabilitation system proposed by Hondori et al [4].

Users are directed by the system to perform specific hand motions. In the first

column, users reach for boxes to play sounds; in the second column, users pour

virtual water on the blue spot; in the third column, users grasp randomly posi-

tioned circles.

2. Related Literature

This section discusses related research work. We discuss AR systems with a

similar focus on human motion. We will then discuss the difference between our

proposed system and existing free-viewpoint image generation systems. We also

take a special look at free-viewpoint image generation systems that utilize RGB

cameras, RGB-D sensors, and human pose estimation.

2.1 Learning motion with AR

AR is the combination of a scene from the real world with a virtual object.

Our system aims to display a virtual subject with AR. There exist similar AR

applications that were developed to provide viewers with an augmented view of

motion in order to aid users’ learning.

Hondori et al. [4] propose a system for users who have suffered a stroke. The

rehabilitation process usually requires repetitive motion on the part of the user.

The system makes the user perform motions that are commonly used in daily

life, such as reaching, grasping, and pointing. The AR portion of the system

generates virtual targets for the user to interact with (Fig. 4).

Tsuchida, Terada, and Tsukamoto [5] propose a learning support system

specifically for dancers in a formation. In the place of a missing dancer, they

4



Figure 5: Dancing with a robot [5]. The robot carries a screen that simulates the

appearance of a missing dancer.

used a self-propelled robot with a screen displaying the appearance of the dancer

(Fig. 5). The robot moves in space according to how the dancer would have

moved. Users who tried the system danced more accurately, i.e. closer to the

actual trajectory, with the robot than without.

The system proposed by Henderson and Feiner [6] shows the user instructions

on how to do a specific procedure, by way of arrows and labels in 3D space

attached to key objects (Fig. 6). Users wore an optical see-through head-mounted

display, and the instructions were overlayed on top of their view. Users who were

surveyed preferred to use the proposed system over an instructional video with

similar content displayed on an LCD monitor.

The YouMove system [7] first records and tracks the motion of the subject

using an RGB-D sensor. Afterwards, viewers stand in front of a “magic mirror”

(Fig. 7) and the system overlays the subject’s motions on their reflection. In this

way, viewers can more easily copy difficult motions. The system also provides a

comparison between the subject and a viewer using 3D stick figures, which the

viewer can rotate in order to view the motions from different directions. However,

5



Figure 6: The AR instruction system proposed by Henderson and Feiner [6]. The

AR arrows instruct the user on how to move in 3D space.

as useful as they are, stick figures lack realism and naturalness.

2.2 Free-viewpoint image generation

Considering this, free-viewpoint image generation techniques can be used to pro-

vide complete renderings of video or parts of video. Free-viewpoint image gen-

eration systems use various methods in order to generate images of a scene from

arbitrary viewpoints, including using RGB cameras, using RGB-D sensors, and

using human pose estimation. This section introduces some of the research work

that has been done on these techniques.

2.2.1 Using RGB frames

Several free-viewpoint image genration methods generate a 3D scene from multi-

ple RGB frame captures of the same scene. Some of the first developed of these

systems used the image-based visual hull (IBVH) [12]. IBVH-based techniques

build a 3D model of an object by capturing it from multiple viewpoints and in-

tegrating the sillhouettes in each image. The original IBVH system was used

for static objects. However, Würmlin et al. [13] use this technique in order to

generate free-viewpoint image sequences of a moving subject. Since the subject

was in motion, his sillhouette changed every frame. To resolve this problem, they

made use of multiple cameras, all capturing the subject simultaneously.

Similar to these are the systems based on voxels and marching cubes [14, 15]:

Matsuyama and Takai [16] and Starck, Miller, and Hilton [1]. These systems

first generate, using multiple cameras, a voxel representation of the subject, and

6



Figure 7: AR “magic mirror” [7]. The ideal motions are overlayed on top of a

mirror image of the user.

then convert it into a 3D mesh using the marching cubes algorithm. The mesh is

colored using view dependent textures in [16], while [1] blends the RGB frames

from each camera into one integrated texture.

Another class of these systems interpolates captured views in order to generate

novel ones. Zitnick et al. [2] and Karsten et al. [17] segment frames into layers

and then blend the layers captured from two cameras in order to render an image

from a virtual viewpoint that is somewhere in between the two cameras.

2.2.2 Using RGB-D sensors

Other systems use a combination of depth and RGB data in order to generate

free-viewpoint images. Dai and Yang [18] capture and render a subject in real

time, from an arbitrary viewpoint, using multiple RGB-D sensors. Each sensor’s

7



Figure 8: Synthesizing a new viewpoint of a dance [2]. Left and right frames are

interpolated to produce the image in the center.

foregound layer is merged to produce the final result. Alexiadis, Zarpalas, and

Daras [19] also capture a dynamic scene using multiple RGB-D sensors. Each

sensor’s output is converted into 3D meshes and merged, taking care to remove

redundant polygons.

Depth data also can be converted into 3D point clouds. Point clouds from

multiple viewpoints can be integrated to form a representation of the entire scene.

Waschbüsch et al. [3] capture an RGB-D stream from projector-camera combina-

tions around the scene (Fig. 2 (bottom)), and then convert the color and depth

data into 3D points, which they then integrate. Kainz et al. [20] also make use of

multiple RGB-D streams. They use a combination of point cloud integration and

IBVH. The point cloud method usually produces noisy edges and IBVH does not

detect concavities, but an intersection of the two produces a model with clean

edges and proper concavities.

Other interesting systems include De Aguiar et al. [8], who in addition to

using RGB frames, also use a laser scanner to construct a 3D mesh model of the

subject in advance, which is similar to using a depth sensor. They then capture

the subject’s motion and use keypoints in each frame to transform the model.

In order to locate the 3D positions of the keypoints, they capture from multiple

cameras simultaneously. Using this method, they are able to capture a detailed

mesh with motion (Fig. 9).

2.2.3 Using human pose estimation

Some free-viewpoint image generation techniques dedicated to synthesizing novel

images of human actions also use human pose estimation at some point.
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Figure 9: Detailed model and motion of a subject captured by De Aguiar et al. [8]

Carranza et al. [9] first initialize a general 3D model to the body shape of a

subject (Fig. 10). Then, by capturing that subject using multiple cameras, they

are able to obtain sillhouettes from multiple viewpoints over multiple frames. For

each frame, they then find the pose of the 3D model that fits to each sillhouette.

Shotton et al. [21] developed an algorithm that estimates human motion in

real time for the Microsoft Kinect. This was used for the systems proposed by

Ye et al. [10] and Malleson et al. [22]. In [10], three Kinects are used in order to

generate free-viewpoint images of human motion (Fig. 11). Each Kinect captures

a point cloud of the scene, similar to the systems above. In order to correctly

integrate the point cloud, they use a number of constraints, such as the extrinsic

parameters of each Kinect, and the pose of the subjects. Using this method,

they are able to generate free-viewpoint image sequences of up to two subjects.

In [22], on the other hand, only a single Kinect is used. They build a 3D model

of a subject using voxels and apply the subject’s motion to the model in order to

generate a free-viewpoint image sequence. To accomplish this, they capture the

subject’s pose in each frame, and then assign voxels to defined body parts.

2.3 Summary and relation to our work

In this section we discussed ways to possibly increase users’ comprehension of

motion, for the purpose of learning. The two methods that we focused on were

AR and free-viewpoint image generation. AR systems are useful for comparisons

between virtual and real world objects. Free-viewpoint image generation systems

are useful for viewing different perspectives of the same object.

9



Figure 10: Human pose estimation and free-viewpoint image generation system

by Carranza et al. [9] First column: general 3D model. Second column: two

frames of input. Third and fourth column: 3D model fit to the input.

Our proposed system renders reenactments, which are free-viewpoint images

of a human subject, e.g. the output of [1, 8, 9]. Additionally, so that we are not

forced to use multiple cameras, we also propose a method to capture reenactments

with a single RGB-D sensor, using human pose estimation. The advantage of

our system compared to existing AR-based learning support systems is the fact

that we synthesize the complete appearance of the subject that the viewer is

attempting to copy. The existing systems are more abstract; this means that

their output is not so realistic or natural. In the next part we will go into the

details of our AR reenactment system.

10



Figure 11: Capturing two users with three handheld Kinects simultaneously [10].
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3. The AR Reenactment System

In this section, we will discuss the details of our proposed AR reenactment system.

We will go into how a user can capture the motion of a subject, and how a viewer

can view the synthesized reenactment.

3.1 Overview of AR reenactment system

As shown in Fig. 12, the proposed AR reenactment system consists of two stages:

capturing stage and reenactment stage.

During the capturing stage, a user of the proposed system captures the motion

of a subject using a single RGB-D sensor, resulting in a stored video stream

consisting of NV video frames. The RGB-D sensor’s pose is estimated using a

visual SLAM technique [23] in an arbitrarily set world coordinate system (Fig. 13).

Each video frame consists of an RGB frame, a depth frame, and the subject’s

estimated pose, which is represented by the positions of a predefined set of joints,

called a skeleton, in the world coordinate system. We then generate a rough

3D model of the subject based on the skeletons and the depth frames. The 3D

model consists of one cylinder per body part and only defines their shapes; we

will assign their position and rotation during the reenactment stage. The video

stream and the 3D model are stored in a database for later use in the reenactment

stage. Additionally, the SLAM technique generates a set of map points in order to

track the camera’s pose. We store those so we can use the same world coordinate

system in the reenactment stage.

During the reenactment stage, we synthesize an image of the subject from

the stored video stream from the viewpoint of a viewer’s camera. The pose of

the viewer’s camera is estimated using the visual SLAM technique and the 3D

map stored in the database. We next synthesize the k-th frame of the subject’s

reenactment by applying the rough 3D model which we generated during the

capturing stage to the k-th skeleton in the stored video stream, and afterward

texturing it with the RGB frame from an appropriate stored video frame. Finally,

the proposed system presents the reenactment superimposed on the real-time

RGB frame captured by the viewer’s camera.

Since the proposed system involves three coordinate systems, i.e., the world,

12
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Figure 12: Overview of the proposed system.
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the RGB-D sensor’s, and the viewer’s, we need to transform between them

(Fig. 13). The subject’s skeleton is initially in the RGB-D sensor’s coordinate

system and is transformed into the world coordinate system before it is stored

in the database. This transformation is done using transformation matrix Mn,

which is obtained through camera pose estimation. For synthesizing the subject’s

reenactment, the stored skeleton is converted from the world coordinate system

to the viewer camera’s coordinate system. The transformation matrix used for

this conversion is M∗, which is again obtained using camera pose estimation.

3.2 Capturing stage

We first estimate the RGB-D sensor’s pose in the world coordinate system. Next,

we track and capture the subject’s skeleton based on the depth frame obtained

from the RGB-D sensor. Lastly, we generate a rough 3D model of the subject’s

body using the stored video stream.

3.2.1 RGB-D sensor pose estimation

As we mentioned, our RGB-D sensor may move while capturing. Therefore, we

set an arbitrary world coordinate system and track the sensor’s pose within it. For

this purpose, we employ a visual SLAM system (e.g. PTAMM [23]) to constantly

track our RGB-D sensor’s translation and rotation. For the n-th video frame

of the video stream, we estimate the RGB-D sensor’s pose as extrinsic camera

parameters Mn.

3.2.2 Motion capture

Figure 14 (a) shows the NJ joints and NBP body parts that compose a skeleton

of the subject, where a body part is the segment formed by a specific pair of

joints. The skeleton of the subject’s body in the n-th frame can be extracted and

tracked using a human pose estimation technique, e.g., [21]. Assuming a single

subject in the scene, we denote the skeleton in the n-th frame by

Sn = {sn,i|i = 1, . . . , NJ}, (1)
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Figure 14: (a) The skeleton representation of the subject. Circles are joints, and

segments are body parts. (b) Corresponding depth frame with definitions of some

angles. (c) Rectangles fitted to each body part.

where sn,i is the 3D position of the i-th joint of the skeleton. Since human pose

estimation gives the joints positions in the RGB-D sensor’s coordinate system,

shown in Fig. 13, using the inverse of Mn, which maps a 3D coordinate from the

world coordinate system to the RGB-D sensor’s coordinate system, we transform

the 3D joint positions in Sn by s′n,i = M−1
n sn,i for all i in Sn and define the

skeleton in the world coordinate system as S′
n = {s′n,i|i = 1, . . . , NJ}. We store

the n-th video frame, i.e., skeleton S′
n, the RGB frame In, and depth frame Dn

in the database.

3.2.3 Rough 3D model building

To render the reenactment of the subject, we use a 3D model of the subject.

In this step, we build the shape of the 3D model. In this work, we chose to

represent each body part with cylinders. Since the heights of the cylinders are

trivially determined from the length of the body part in the skeleton of a stored

video frame, we only need to determine the radii of the cylinders. For this, we first

find the index of a single representative frame n̂ from the stored video stream and

then fit rectangles to the subject’s region in the depth frame of the representative

16



frame Dn̂, which can viewed as a projection of the cylinders onto the image plane

of the RGB-D sensor.

To easily obtain radii and heights of the cylinders based on the rectangles

that can be considered as the cylinders’ projection, the directions of their heights

should be perpendicular to the optical axis of the RGB-D sensor and body parts

must not overlap. This means that the representative frame should contain the

subject’s appearance that meet the following requirements: (i) both arms should

be away from the body, (ii) the line segments formed by the joints corresponding

to both hands should be parallel to the image plane as possible, and (iii) the legs

should be uncrossed. The camera should, as much as possible, not be rotated for

capturing the representative frame.

These requirements ensure that the representative frame has body parts that

are separate from each other as shown in Fig. 14 (a), which makes it easier to

build an accurate 3D model of the subject’s body. Such a pose may be requested

by the user who captures the action, but it may also be captured during the

normal course of recording. Using notations as in Fig. 14 (b), these requirements

can be empirically encoded as

F (n) = θLnl
L
n + θRn l

R
n + λg(φR

n , φ
L
n). (2)

The first and second terms, θLnl
L
n and θRn l

R
n , reward poses where the subject holds

his/her left and right arms out to the side and parallel to the image plane, as θLn
and θRn are the angles between the torso and the left and right arms in S′

n, and lLn
and lRn are the x-components of the normalized left and right arm vectors. The

third term g(φR
n , φ

L
n), which rewards poses with legs uncrossed, is defined as

g(φR
n , φ

L
n) =

1 : if φR
n > φL

n

0 : otherwise
. (3)

λ is an empirically-defined constant.

We obtain the index of the most appropriate frame in the sense of the above

criterion by maximizing F , i.e.,

n̂ = argmax
n

F (n). (4)

We then find the rectangles that fit each body part in Dn̂, as in Fig. 14 (c).

Radius ra,b of the cylinder for the body part with joints a and b is then given
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as the length of the line segments perpendicular to the body part segment. For

compensating the differences in the body part segment length from frame to

frame, we store in the database the radius ratio given by wa,b/‖sn̂,a − sn̂,b‖ for

each body part, where wa,b is the width of the fitting rectangle.

3.3 Reenactment stage

In the reenactment stage, a viewer with a mobile device captures an RGB-only

video stream from a camera installed in the device. The proposed system syn-

thesizes the reenactment sequentially for this real-time stream. For each frame,

we estimate extrinsic camera parameters M∗ of the viewer’s camera again by the

SLAM technique based on the 3D map stored in the database. The reenactment

stage then transforms the skeleton to the viewer’s camera coordinate system us-

ing M∗, applies the rough 3D model stored in the database, and colors it based

on the appropriate RGB frame in the database. Finally, the reenactment is su-

perimposed on the frame of real-time RGB video stream to be displayed on the

viewer’s mobile device.

3.3.1 Viewer camera pose estimation

In the reenactment stage, we track the viewer camera’s pose in order to convert

the subject’s skeleton from the world coordinate system to the viewer camera

coordinate system. In order to use the same world coordinates as in our capturing

stage, we use the 3D map generated during the capturing stage.

3.3.2 Appropriate texture selection

Since our 3D model of the subject is very rough and no color is assigned to it,

we apply textures to our 3D model. For a static scene, view-dependent texture

mapping proposed by Debevec et al. [24] works well for this purpose by assigning

as textures those images which were captured from the viewpoint close to that

of the novel image to be synthesized. But we cannot adopt it naively because

the proposed system captures a moving subject and uses only a single RGB-D

sensor and thus there are no RGB frames that show the same scene at the same

time from different viewpoints. Our idea for solving this problem is based on our
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Figure 15: Vector transformations.

observation that there may be RGB frames that show the subject in a similar

pose, which means that we can select a frame such that the joint positions in the

selected frame are close to those in the novel image to be synthesized.

When reenacting the subject’s appearance from the k-th skeleton, S′
k, we

first transform joint s′k,i in the world coordinate system into the viewer camera’s

coordinate system using M∗, giving us S∗
k. We also transform S′

n for all n into

its original RGB-D sensor’s coordinate system using Mn, giving us Sn. Figure 15

shows the three coordinate systems and the Since the position of the subject in the

world coordinate system differs frame by frame, to make the selection translation

invariant, the position of a specific joint is subtracted from each joint’s position in
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order to make the specific joint coincide with the origin. In this work, we choose

the neck joint shown in Fig. 14 (a) as the origin. We select the appropriate stored

video frame, where the associated skeleton Sn (in the original RGB-D sensor’s

coordinate system) is closest to the S∗
k (in the viewer camera’s coordinate system).

To summarize, we find appropriate frame index n̄ by

n̄ = argmin
n

NJ∑
i=1

‖(s∗k,i − s∗k,neck)− (sn,i − sn,neck)‖, (5)

where s∗k,neck and sn,neck are the neck joint position of S′
k and S′

n, respectively.

This method of texture selection does not preserve the subject’s facial ex-

pression. For our purpose, however, it is sufficient to make the subject’s motion

comprehensible.

3.3.3 Applying the 3D model

We now render the cylinder model based on the radius ratios stored in the

database, the frame in the sequence that we are reenacting, and the joints in

the viewer camera coordinate system. For the body part associated with joint

indices a and b, the cylinder axis endpoints will be at s∗k,a and s∗k,b. The radius

will be the length of the cylinder axis multiplied by the radius ratio computed

earlier: rk,a,b = ‖s∗k,a − s∗k,b‖ra,b, where ra,b is the radius ratio associated with the

body part.

3.3.4 Applying texture

Now that we have selected an appropriate RGB frame, we can apply it to the

cyinder model. However we cannot just copy the texture naively. Since the poses

represented by S∗
k and Sn̄ are not exactly the same, naively copying the cylinder to

the selected RGB frame can lead to inconsistency between the cylinders and the

frame (Fig. 16). We thus find transformation Ωk,n̄ individually for each cylinder

that compensates for the difference between the subject’s poses in S∗
k and Sn̄. We

apply this transformation to each point on the cylinder to find its corresponding

pixel location on the RGB frame, and determine its color from that pixel.

We want to transform the cylinder with axis endpoints s∗k,a and s∗k,b and radius

rk,a,b, which the cylinder in viewer camera coordinates, into the cylinder with axis
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Figure 16: First column: cylinder model. Second column: Texturing using only

the head body part’s projection. Third column: Texturing with individual body

part projection.

endpoints sn̄,a and sn̄,b and radius rn̄,a,b, which is the corresponding cylinder in

the RGB frame we are extracting from (Fig. 17).

All equations from here will refer to the body part formed by joints a and

b. We omit the subscript unless we need to refer to one of the two joints in

particular.

First we find the axis vectors v∗
k for the viewer camera cylinder and vn̄ for the

RGB frame cylinder:

v∗
k = s∗k,a − s∗k,b (6)

vn̄ = sn̄,a − sn̄,b. (7)

The rotation is then calculated by:

Rk,n̄ = Θ

(
v∗
k × vn̄, cos

−1

(
v∗
k
Tvn̄

‖v∗
k‖‖vn̄‖

))
. (8)

Θ(w, θ) is the Rodrigues rotation algorithm, i.e. the algorithm that finds the

rotation matrix given an axis and an angle. The axis is the cross product between

the axis vectors, and the angle is the angle between them. The scale is the ratio

between the lengths of the two vectors:

sk,n̄ =
‖v∗

k‖
‖vn̄‖

, (9)
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Ωk,n

Figure 17: Left: cylinder model in the viewer’s camera. Right: RGB frame for

coloring with overlaid cylinders. Ω is the transformation that relates them.

the translation is the difference between the joints with index a:

tk,n̄ = sn̄,a − s∗k,a, (10)

and the resulting transformation is (Fig. 17):

Ωk,n̄ =
[
sk,n̄Rk,n̄ tk,n̄

]
(11)

Finally, we need to compensate for facing, which means ensuring that the

resulting cylinder faces front, i.e. the side of the cylinder that the viewer can

see. This means that we need to find the vector that faces front, which is the

unit vector orthogonal to the cylinder axis that is closest to the ray from the axis

endpoint to the viewing point (Fig. 18). We calculate the front vector of the first

cylinder and apply Ωk,n̄ to it to see where it ends up. Then, we calculate the

ideal facing vector of the second cylinder and rotate it along its axis.

We take the viewing ray from an axis endpoint (e.g., −s∗k,a). The front vector

of a cylinder is calculated by taking the vector rejection of that viewing ray from

the cylinder axis:

f∗k = v̂∗
k × (−s∗k,a × v̂∗

k) (12)

Applying Ωk,n̄ to it, we obtain the intermediate facing:

f ′k,n̄ = Ωk,n̄(s
∗
k,a + f∗k ) (13)
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Figure 18: Rotating a cylinder so that it faces front.

We now calculate the ideal facing for the cylinder on frame n̄, again using the

vector rejection:

f∗n̄ = v̂∗
n̄ × (−s∗n̄,a × v̂∗

n̄) (14)

Finally, we rotate the intermediate facing into the ideal facing by using the cylin-

der axis on frame n̄ and the angle between the two facings:

Q∗
k,n̄ = Θ

(
vn̄, cos

−1

(
f ′k,n̄

T fn̄

‖f ′k,n̄‖‖fn̄‖

))
(15)

The final transformation is thus, for viewer camera coordinate point p∗
k and RGB

frame coordinate point pn̄:

pn̄ = Q∗
k,n̄Ωk,n̄p

∗
k (16)

We then apply the intrinsic camera matrix to pn̄ in order to get the pixel

value at (x, y) on the RGB frame. We use our human pose estimation technique

in order to determine if it belongs to the subject, or to the background. In the

latter case, we ignore the pixel.
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Finally, we superimpose the reenactment on the real-time RGB frame cap-

tured from the viewer’s camera.
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4. Implementation

We implemented the capturing stage of the proposed system on an Intel i7 with a

3.20GHz processor and 32GB of RAM. We used a Microsoft Kinect as our RGB-

D sensor. We implemented the reenactment stage on a Microsoft Surface Pro 2

with a 1.60GHz processor and 4GB of RAM. We used its embedded camera as

the viewer’s camera. The intrinsic parameters for Kinect and Surface’s cameras

were preliminarily calibrated. We used OpenGL [25] to render the reenactment.

We set constant λ for 3D model building to be 2000.

For camera pose estimation in both capturing and reenactment stages, we em-

ployed Parallel Tracking and Multiple Mapping (PTAMM) [26], which is capable

of storing the 3D map for later uses, in order that we can use the shared world

coordinate system in these stages. We set the world coordinate system according

to PTAMM.

In order to continuously track the subject’s joints, we made use of OpenNI [27]

and NiTE [28] skeleton tracking. Our representation of the skeleton contains 16

joints and 11 body parts (Fig. 19). Unfortunately, the NiTE skeleton tracker

returns joints in the depth sensor’s coordinate system, a different coordinate

system from PTAMM. Thus we converted the skeleton joints captured by the

skeleton tracker into the coordinate system used by PTAMM. To do this, we

calculate a transformation matrix (i.e., rotation, translation, and scale) between

the two coordinate systems.

Happily, PTAMM tracks a number of map points, i.e. feature points with

which it estimates the camera pose, as well as their 3D coordinate in the camera

coordinate system. We now query the 3D camera coordinate representation of

each map point. Next, we take a depth frame captured by our RGB-D sensor,

and for each map point, find the corresponding depth pixel and convert it into

a 3D point in the RGB-D sensor’s coordinate system, according to our sensor’s

driver. We now need to find the transformation between the RGB-D sensor points

and the PTAMM map points. Given that pi is the i-th map point and qi is the

corresponding point projected to the RGB-D sensor’s coordinate system, we find

the transformation, i.e. rotation R, translation t, and scale s, in the sense of
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least squares, as:

(R̄, t̄, s̄) = argmin
(R,t,s)

N∑
i=1

‖pi − (sRqi + t)‖2. (17)

According to [29], we can obtain R̄ by

R̄ = U

 1 0 0

0 1 0

0 0 det(UVT )

VT , (18)

where U and VT are obtained from the singular value decomposition of the

covariance matrix of the two sets of points:

UΣVT =
N∑
i=1

p′
iq

′T
i , (19)

where p′
i and q′

i are the points adjusted by their centroid:

p′
i = pi −

1

N

N∑
j=1

pj, (20)

q′
i = qi −

1

N

N∑
j=1

qj. (21)

We can use the rotation and the centroid-adjusted points to form another least-

squares equation to find the scale:

s̄ = argmin
s

N∑
i=1

‖p′
i − sR̄q′

i‖2, (22)

which we solve by finding the ordinary least squares estimator:

s̄ =

N∑
i=1

p′
i
T R̄q′

i

N∑
i=1

‖R̄q′
i‖2

. (23)

Lastly, the translation is the difference between the properly rotated and scaled

centroids.

t̄ = −s̄R̄
N∑
j=1

qj +
N∑
j=1

pj (24)

For any point q∗ that we obtain from the RGB-D sensor, we can thus convert it

to the correct coordinate system by p∗ = s̄R̄q
∗
+ t̄.
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5. Experimental Results

We evaluated the system using our prototype, and we also conducted a user study

to find out how users compare the reenactments to conventional video. In this

section we describe the reenactment results, as well as the results of the user

study.

5.1 Reenactment results

Figures 20–26 show the reenactments generated by the proposed system. We can

see that the reenactments generated by the system are coherent, i.e. they are

consistent with regards to the recorded motion, the subject’s appearance, and

the change in viewpoint.

However, there are some major errors that would possibly impede comprehen-

sion. The most noticeable error is the doubling of body parts, which can be seen

in Fig. 20. This is the result of self-occlusion by the subject. The 3D model color-

ing process divides the RGB frame into body parts for texturing each cylinder in

the rough 3D model. But the texture extraction does not account for occlusion,

which sometimes results in unwanted objects being included in the texture. At

large changes in viewing angle, we observe a different type of error. In the image

on the first column and first row of Fig. 21, the subject’s legs are incomprehen-

sible. Also, large artifacts have appeared in the arm regions. This is the result

of choosing inappropriate RGB frame to color the cylinders, or simply that more

appropriate RGB frames do not exist. This type of error makes it harder to com-

prehend the output, as the body parts appear to face the wrong way and adjacent

body parts do not combine well. Another type of error can be seen in Fig. 22.

If the environment has changed since the time of capture, the reenactment may

be rendered in the wrong place. Lastly, the skeleton tracker sometimes fails to

register the correct joint positions (Fig. 23). This appears to happen often when

the subject moves quickly or faces away from the RGB-D sensor. The effects are

two-fold. For one, it introduces a skeleton into the sequence that is inconsistent

with the other skeletons. If this skeleton is textured, it produces bad results, as

in the figure. For another, the skeleton is misregistered with the associated RGB

frame. If we use that frame as a texture, we risk extracting textures from the
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Figure 20: Left: frame from an RGB video. Right: equivalent reenactment with

double-limb error.

Figure 21: Comparison of the same frame of a reenactment in our system from

different angles.
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Figure 22: Left column: sample frames from an RGB video. Right column:

equivalent reenactments.
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Figure 23: Left: misregistered pose applied to the cylinder model. Right: texture

applied to the misregistered pose.

wrong parts of the RGB frame.

On average, the system runs at 9fps on the Surface during reenactment.

5.2 User study

5.2.1 Setup

We asked a martial artist to serve as our subject and captured him performing a

Taekwondo form. We captured the motion with a fixed-position Kinect, consider-

ing that users who capture an RGB-D video stream generally do not move while

capturing. Before capturing, we made a 3D map with the PTAMM system. The

resulting RGB-D stream was 23 seconds long and consisted of 580 frames. For

comparison between the proposed system and conventional video, we also com-

piled the RGB component of our captured stream into a separate video. Figs. 24,

25, and 26 show some example frames from the RGB images, compared with the

AR reenactment generated by our proposed system.
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Figure 24: Left column: sample frames from the RGB video that we used in the

user study. Right column: equivalent reenactments.
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Figure 25: Left column: sample frames from the RGB video that we used in the

user study. Right column: equivalent reenactments.
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Figure 26: Left column: sample frames from the RGB video that we used in the

user study. Right column: equivalent reenactments.
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Table 1: Questions asked in our user study (originally in Japanese).

# Questions Translation

Q1 普通のカメラで記録した人物が環境

中のどこにいるか把握できていると

思いますか？

Were you able to comprehend the recorded

motion on the conventional video?

Q2 提案システムで記録した人物が環境

中のどこにいるか把握できていると

思いますか？

Were you able to comprehend the recorded

motion on the proposed system?

Q3 提案システムでは、視聴位置によっ

て人物の位置の把握しやすさが変化

しますか？

Did it become easier to comprehend the

recorded motion on the proposed system

as you moved the perspective?

Q4 普通のカメラの映像と比べて、提案

システムで視聴した場合、人物の動

作は把握しやすいと思いますか？

Was it easier to comprehend the recorded

motion on the proposed system, than on

the conventional video?

Q5 普通のカメラの映像と比べて、提案

システムで生成した画像の質は満足

できますか？

Were you satisfied by the quality of the

image generated by the proposed system,

compared to the conventional video?

Q6 実際の人物の動作と普通のビデオで

記録された人物の動作は比較しやす

いと思いましたか？

Were you easily able to compare the mo-

tions of the real person with the recorded

motion on the conventional video?

Q7 実際の人物の動作と提案システムで

記録された人物の動作は比較しやす

いと思いましたか？

Were you easily able to compare the mo-

tions of the real person with the recorded

motion on the proposed system?

Q8 普通のカメラで記録された映像に比

べて、提案システムでのパフォーマ

ンスの視聴は楽しいと思いますか？

Is the proposed system more fun to use

than conventional video?

Q9 提案システムはどのようなアプリ

ケーションに有用だと思いますか、特

定の動作の習得？　

Do you think that this system would be

useful for learning specific motions?

Q10 提案システムはどのようなアプリ

ケーションに有用だと思いますか、パ

フォーマンスの視聴？

Do you think that this system would be

useful for watching performances?
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The user study was in three parts. During Part 1, participants were asked

to watch the 2D conventional video first, and then the reenactment generated

by the proposed system. Both were presented on the Microsoft Surface’s dis-

play. The participant was allowed to move around while watching the proposed

system’s reenactment. This part investigates whether the proposed systems aids

user comprehension of 3D motion. During Part 2, a real person attempted to

copy the motion of the recorded subject. The participants first simultaneously

watched the conventional video and the motions of the real person; afterward,

they simultaneously watched the reenactment and the motions of the real person.

Participants were again allowed to move freely while watching the reenactment.

Part 2 is dedicated to show the effectiveness of the proposed system over the

conventional video for learning and training of a specific motion, considering that

if the participants were easily able to see the differences between an expert and

a learner, this would imply an easier learning process. The questions in Part 3

were designed to show the applicability of the proposed system. After watching

the video, they were asked to answer the questions in Table 1. The answers were

multiple choice and free entry. The multiple choice answers were on a scale of 1,

I strongly think not, to 5, I strongly think so.

5.2.2 Results

Figure 27 shows the participants’ answers. For part 1, the answers show that the

proposed system did not improve much from the conventional video. In terms of

pure comprehension, the results of Q2 over Q1 shows that the system improved

slightly. Almost all of the participants agreed that viewing the reenactment from

a different viewpoint improved comprehension (Q3). Q4 was split almost in half,

meaning that half of the participants rated the proposed system as more com-

prehensible than conventional video. And for Q5, the participants unanimously

answered in the negative, meaning that nobody was satisfied with the quality of

the reenactment. Some comments from the participants were that the output was

jittery, that the sillhouette wasn’t smooth, and that if they moved drastically, the

image would become corrupted.

In comparisons with a real person for part 2, the proposed system improved

slightly over conventional video (Q6 and Q7). A common comment was that it
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Figure 27: Evaluation results for questions our user study. 1 means strong dis-

agreement and 5 means strong agreement.

was easier to compare the motions of the real human with the reenactment.

Finally, in part 3, most of the participants thought that the system had good

applicability, from Q8–Q10 as well as the comments.
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6. Conclusion

In this work, we introduce the concept of reenactments for the purpose of learning.

To realize the reenactments, we developed a system that can synthesize a free-

viewpoint image of a moving subject using a single RGB-D sensor.

We conducted a user study to gauge the effectiveness of the system for the

purpose of learning a motion. Our results showed that the system was compre-

hensible when viewed from viewpoints close to the capturing viewpoint. In these

cases, the reenactments were able to synthesize the subject’s appearance and mo-

tion close to what was expected from viewing the RGB video. Another strength

of the system was making comparisons in real time. The reenactment and the

real world appear on the same screen, making it trivial for viewers to see the

difference. This is a direct benefit over conventional video, where viewers must

switch their attention between the screen and the real world.

On the other hand, the system has some limitations. The reenacted motion is

limited to what the system can see, meaning that any motions that the subject

does that the sensor does not capture can not be reenacted. Adding to this, the

appearance of the subject is drawn from the actual frames captured. This means

that if, for example, the captured frames do not include a particular viewpoint,

the output may suffer when that viewpoint is requested.

Also, the reenactments also contained some rendering errors. The further

away from the original viewpoint, the more errors appeared. Since the motivation

of the system was to increase comprehensibility at viewpoints other than the

original, this is an undesirable result. We identified some possible causes. First,

the texture selection may be choosing inappropriate textures. We must redefine

the criteria for an appropriate texture. In our current implementation, the two

skeletons being compared must simply be similar distance-wise. However, there

may exist a definition that gives better results. Next, the original RGB frames are

badly affected by self-occlusion. Currently, we use each RGB frame as-is, meaning

we do not perform any processing before using them as textures. This means that

the cylinder projection for texture extraction simply extracts the whole cylinder

shape. We need to isolate each body part from its neighbors and fill in the gaps

in order to solve this problem. Lastly, the skeleton tracker sometimes fails to

track the correct position of the joints. This happens when the motion is too

38



fast, and sometimes when the subject’s back is to the camera. However, filtering

or correcting for its output may improve results.

The system also has the potential to grow in other ways. One way is to

replace the RGB-D sensor used for capturing with an RGB camera, and to do

skeleton tracking on the RGB frames. This would increase the accessibility of

the system by allowing mobile users to capture reenactments. Another way is

to introduce a method to relocate reenactments. Currently, the reenactment

must be rendered over the originally captured environment. Naively relocating it

introduces rotation and scaling errors, so the new environment must be carefully

considered.

During the user study, most of those surveyed answered that the system could

also be applicable to many things, e.g. performance, and this is certainly another

possible avenue for future development. However, our ultimate goal is to imple-

ment the system as a social reenactment-sharing network. Users will be able to

capture reenactments wherever they want, and potential viewers will be able to

see if a previous user captured a reenactment close to their location.
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