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Abstract—This paper proposes a method for estimating ex-
trinsic camera parameters using video images and position data
acquired by GPS. In conventional methods, the accuracy of the
estimated camera position largely depends on the accuracy of
GPS positioning data because they assume that GPS position
error is very small or normally distributed. However, the actual
error of GPS positioning easily grows to the 10m level and the
distribution of these errors is changed depending on satellite
positions and conditions of the environment. In order to achieve
more accurate camera positioning in outdoor environments,
in this study, we have employed a simple assumption that
true GPS position exists within a certain range from the
observed GPS position and the size of the range depends on
the GPS positioning accuracy. Concretely, the proposed method
estimates camera parameters by minimizing an energy function
that is defined by using the reprojection error and the penalty
term for GPS positioning.
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I. INTRODUCTION

Extrinsic camera parameter estimation for a moving video
camera has been widely investigated and used for com-
puter vision and virtual reality applications such as three-
dimensional reconstruction [1], novel view generation [2]
and augmented reality [3]. For these applications, Structure
from Motion (SfM) technique has often been used. In SfM,
most of the recent works employ the bundle adjustment that
non-linearly minimizes the sum of reprojection errors [4],
[5]. The SfM suffers from accumulative errors that cannot
be resolved in principle if the method uses only images. This
problem especially affects the applications that require the
camera parameters in large-scale outdoor environments.

In order to reduce accumulative errors, some reference
points or external sensors like GPS have been used in
addition to video images [1], [6]-[10]. The former ap-
proach uses known 3D positions of reference points as prior
knowledge about a target environment [6]. Although this
method can estimate absolute camera positions without any
other sensors, 3D measurement for the target environment
is necessary and it requires much manual intervention. On
the other hand, GPS and vision hybrid methods [1], [7]-
[10] can also estimate absolute camera positions without
pre-measurement. Thus, a GPS and vision hybrid is one

of the promising solutions for extrinsic camera parameter
estimation in large-scale outdoor environments. However,
existing methods still have a problem with accuracy.

Conventional vision and GPS hybrid methods can be
classified into Kalman filter based methods [1], [7], [8] and
bundle adjustment based methods [9], [10]. Kalman filter
based methods [1], [7], [8] tend to be employed for real-
time applications because GPS and vision data can instantly
be fused from the previous state and the current measure-
ment. The problem of the Kalman filter is concerned with
the difficulty of global optimization due to the sequential
updating strategy of the filter design.

Bundle adjustment based methods [9], [10] use the energy
function that is defined as the sum of reprojection errors
and a penalty term of GPS. These methods can globally
optimize the camera parameters by updating parameters so
as to minimize the energy function. However, the accuracy of
the estimated camera position largely depends on the actual
accuracy of GPS because these methods assume that the GPS
position error is very small [9] or normally distributed [10].

In this study, in order to obtain accurate extrinsic camera
parameters even when the GPS positioning accuracy drops
lower, we have employed a more simple and flexible penalty
term for the bundle adjustment. This penalty term is de-
signed by assuming that the true GPS position exists within
a certain range from the observed GPS position and the size
of the range depends on the GPS positioning accuracy.

II. EXTRINSIC CAMERA PARAMETER ESTIMATION
CONSIDERING GPS POSITIONING ACCURACY

The proposed method basically follows the framework
of vision and GPS hybrid methods [9], [10]. As shown
in Figure 1, first, camera parameter estimation (A) and
3D position estimation of feature points (B) are repeated
sequentially for each frame from the first frame to the last
frame. In this repetition, at a constant frame interval k, the
local optimization process (C) is applied to reduce accumu-
lative errors. After estimating initial camera parameters by
the processes (A) to (C), estimated parameters are globally
refined (D). For all the processes, a common energy function
is minimized. In the following, first, the energy function is
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Figure 1. Flow diagram of the proposed method.

defined by using the reprojection error and the penalty term
for GPS positioning. Optimization process is then detailed.

A. Energy function considering GPS positioning accuracy

The energy function E is defined by using the reprojection
error ®; and the penalty for GPS positioning ¥; for the i-th
frame as follows:

E=) ®i+w) ¥, (1)
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where w is a weight for GPS, F' denotes a set of input
frames and F, denotes a set of frames in which GPS
positioning data is obtained. It should be noted that GPS
positioning data are acquired at 1Hz and that of video images
are 15Hz or more. In the following, the energy associated
with reprojection error ®; and the penalty energy for GPS
positioning W, are detailed.
Reprojection error
Reprojection error is a squared distance between the de-
tected 2D position of the feature point and the projected
position of the corresponding 3D feature point in space. The
reprojection error has often been used in SfM. In this study,
the energy term associated with the reprojection error ®; is
defined as follows:
1
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where S; denotes a set of feature points detected in the
i-th frame. k; represents the confidence of feature point j,
which is computed as an inverse variance of the reprojection
error [6]. q;; and §;; represent the detected position of the
feature j in the image ¢ and the 2D projected position of the
3D position for feature j, respectively.

Penalty term for GPS positioning

In this study, the penalty term for GPS positioning is de-
signed by assuming that the true GPS position exists within a
certain range from the observed position of the GPS. Here, as
shown in Figure 2, this range is set as a cylinder by assuming
that GPS positioning error is independent of horizontal and
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Figure 2. Coordinate system of GPS and camera.

altitude directions. Based on this assumption, the penalty
term for GPS positioning ¥, is defined as follows:
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where M, represents the transformation matrix from the
camera coordinate system for the ¢-th frame to the GPS
coordinate system, d represents the position of the GPS
receiver in the camera coordinate system, g; is the observed
GPS position for the i-th frame in the GPS coordinate
system. r and h are radius and half of the height of
the cylinder, respectively, and they are functions of GPS
positioning accuracy p. n is a given large number. This
penalty term W; becomes very small if the estimated GPS
position exists inside the cylinder. Otherwise, ¥; becomes
very big.

B. Optimization by minimizing the energy function

In processes (C) and (D), in order to optimize the
camera parameters and 3D positions of feature points, the
energy function F is non-linearly minimized by the gradient
method. The difference in processes (C) and (D) is the range
of optimized frames. In process (C), in order to reduce
accumulative errors in the sequential process, the parameters
from the (¢ — [)-th frame to the current frame (i-th frame)
are refined. In process (D), in order to globally optimize
the camera parameters, the parameters for all the frames are
refined.

III. EXPERIMENTS

In order to validate the effectiveness of the proposed
method, the result by the proposed method is compared with
that of conventional methods [9], [10] quantitatively by using
a real video sequence. This video sequence is captured by a
video camera held by a walking person. Before comparing



these methods, the cylinder size for the proposed method
is determined by observing GPS positioning data at a fixed
point for a long time.

A. Determination of error range

GPS positioning data are observed at a fixed point using
RTK-GPS (TOPCON GR-3) for 5 hours. In this experiment,
we use solution type of the RTK-GPS (RTK-fix, RTK-
float) that is indicated from the GPS receiver as positioning
accuracy p, because the size of the position error is generally
depending on the solution type. Table I(a) shows maximum
errors for each solution type. In this experiment, true position
of the GPS is calculated as an average of all the RTK-
fix solution data, which are generally more accurate than
RTK-float solutions. Table I(b) shows maximum errors after
removing the largest 5% of errors for each direction. From
this table, it is obvious that there are outliers in the ob-
served positions. In the following experiment, by assuming
that outliers can be removed by checking the consistency
between vision and GPS information, parameters of cylinder
r(p), h(p) are determined by using maximum errors shown
in Table I(b).

It should be noted that, in the following experiment,
the camera and GPS are moving between shutter timings
of successive frames despite the synchronization of GPS
and images is not done in sub-frame accuracy. In order
to consider the camera motion between shutter timings,
the size of the cylinder is actually set a little larger than
values shown in Table I(b): 37mm and 5mm are added
to the cylinder size of horizontal and altitude directions,
respectively, by considering the person’s walking distance
in successive frames.

B. Quantitative evaluation

In this experiment, camera parameters are estimated for
video images (720x480 pixel, 15 fps, progressive scan, 1110
frames) captured by a hand-held moving video camera (Sony
DSR-PD-150) with a wide conversion lens (Sony VCL-
HGO0758). A GPS receiver (TOPCON GR-3) is attached to
the camera and positioning data are acquired at 1Hz during
video capture. In this experiment, all the GPS positioning
data are acquired as RTK-fix solution data and they are
used as the ground truth. From this data, lower accuracy
GPS solutions (RTK-float) are generated in simulation by
masking the GPS satellite data using the post process
software (TOPCON Tools) and generated data are used as

Table I
MAXIMUM ERRORS FOR EACH SOLUTION TYPE [mm].

solution (a) all data (b) without outliers
type horizontal  altitude | horizontal  altitude
RTK-fix 793 677 29 41
RTK-float 12792 20424 3778 9504

the input in this experiment. It should be noted that, in this
experiment, we assume that the input data do not include
the outliers.

The other conditions are as follows. Intrinsic camera
parameters and the position of the GPS receiver in the
camera coordinate system are calibrated in advance, and
these parameters are fixed during video capture. The video
frames and GPS input are manually synchronized. The
weight w in the error function E defined by Eq. (1) is set
as 1078 and n in the penalty term ¥; defined by Eq. (3) is
set as 70. In the local optimization process (C), the frame
interval k£ and the number of optimized frames [ are set as
15 and 500, respectively.

The accuracy of estimated camera positions is compared
with the following methods.

e Method A: The vision based method that does not use
any GPS data.

e Method B: The conventional method [9]. That assumes
GPS error follows a normal distribution and error is
very small. The solution type of GPS data is not
considered.

¢ Method C: The conventional method [10]. That treats
error of GPS data as a normal distribution whose
standard deviation is changed according to the solution
type of GPS data.

In order to evaluate the camera positions by method A in the
GPS coordinate system, some reference points of known 3D
positions are given manually from the 1st to the 30th frame
of the input video for method A. These reference points are
also used for initializing the tracking process for methods
B, C, and the proposed method.

Figures 3 and 4 show estimated GPS positions for hori-
zontal and altitude directions, respectively. Table II shows
position errors for each method. From these results, it
is confirmed that method A is affected by accumulative
errors. Method B is obviously affected by RTK-float solution
data. Although the estimated error for method C is smaller
than the error of method B that considers the accuracy of
GPS, estimated positions are still biased to the RTK-float
solutions. In the proposed method, camera positions are
not clearly biased and it obtains the most accurate camera
positions compared with other methods as shown in Table
IL

Table II
COMPARISON OF POSITION ERRORS [mm].

Method Average  Std.dev.  Max
A 1985 792 2929
B 1787 1497 4742
C 425 278 779

Proposed 241 145 495
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Figure 4. Estimated GPS positions (altitude).

IV. CONCLUSION

In this paper, we have proposed a vision and GPS hybrid
method for accurately estimating extrinsic camera param-
eters even when the GPS positioning accuracy drops to
a lower level by employing a simple and flexible penalty
term for the bundle adjustment. In experiments, we have
confirmed that the proposed method can obtain the most
accurate camera positions compared with conventional meth-
ods. In future work, automatic outlier removal for GPS
positioning will be incorporated with the proposed method.
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