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Abstract
In the field of computer vision, many kinds of cam-

era parameter estimation methods have been proposed.
As one of these methods, an extrinsic camera parame-
ter estimation method that uses pre-constructed feature
landmark database has been studied. In this method,
extrinsic camera parameters of video images are esti-
mated from correspondences between landmarks and
image features. Although this method can work in a
large outdoor environment, its computational cost in
matching process is expensive and it cannot work in
real-time. In this paper, to achieve real-time camera pa-
rameter estimation, the number of matching candidates
are reduced by using priorities of landmarks that are
determined from previously captured video sequences.

1. Introduction
Camera parameter estimation is very important in

various vision-based applications. Some of these appli-
cations like augmented reality (AR), human navigation,
and self-localization of robots and automobiles need
absolute camera position and posture and the estima-
tion process should be done in real-time. In this paper,
we propose an extrinsic camera parameter estimation
method for such applications.

In the field of computer vision, many kinds of im-
age based online camera parameter estimation methods
have been proposed. These methods can be classified
into two groups. One is visual SLAM based method
[1, 2] that can estimate camera parameters without a
pre-knowledge of target environment. In this method,
database construction and camera parameter estimation
are carried out simultaneously. However, absolute cam-
era position and posture cannot be acquired. The other
uses some kinds of pre-constructed databases such as
3-D models [3, 4] and feature landmarks [5]. In this ap-
proach, absolute camera position and posture estimation
can be realized. However, construction of 3-D models
for large and complex outdoor environments needs large
human costs. Thus, we employ feature landmarks as the
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Figure 1. Flow diagram.
database that stores 3-D positions of image features and
image templates [5]. Feature landmark database can
be constructed automatically even in a complex envi-
ronment by using the structure from motion (SFM) for
omni-directional camera [6]. However, landmark based
camera parameter estimation could not work in real-
time because pattern matching process in this method
is computationally expensive to realize illumination and
view direction independent pattern matching.

In this study, in order to realize real-time camera
parameter estimation using landmarks, the number of
matching candidates are reduced by the following ideas.
(1) Reduction of feature points: Tentative camera pa-
rameters are estimated to limit the range of search using
landmark tracking between successive image frames
where view direction and illumination change can be
ignored. (2) Reduction of landmarks: Priorities are
associated with landmarks using previously captured
video sequences to select a smaller number of land-
marks whose matching confidences are high.

2. Camera parameter estimation using fea-
ture landmark database with priorities

Figure 1 shows the flow diagram of the proposed
method. Feature landmark database must be con-
structed for the target environment before online cam-
era parameter estimation. In this research, priorities are
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Figure 2. Elements of landmark database.

newly associated with the landmarks in the database.

2.1 Construction of landmark database
(A-1)3-D reconstruction of target environment
First, the target environment is taken as omni-
directional image sequences. For the captured image
sequences, SFM is applied to estimate the 3-D coordi-
nates of feature points and camera parameters of omni-
directional camera. In this SFM process, feature points
of known 3-D positions [6] or absolute positions mea-
sured by GPS [7] are given as a reference of absolute
position and posture.
(A-2)Acquisition of landmark information
Feature landmark database consists of a number of land-
marks as shown in Figure 2. Each landmark retains
(a)3-D coordinate, (b)viewpoint dependent information,
and (c)priority of landmark.
(a)3-D coordinate of landmark: To estimate the cam-
era parameter in the online process, 3-D coordinates of
landmarks are registered. 3-D coordinates of landmarks
are obtained by the SFM (A-1).
(b)Viewpoint dependent information: In order to
deal with viewpoint dependent visual aspect changes of
landmarks, for each position of omni-directional cam-
era, multi-scale image templates of landmark (b-1) and
position of omni-directional camera (b-2) from which
the image template is captured are registered.
(c)Priority of landmark: Priorities are associated with
landmarks to select reliable landmarks. These priorities
are determined by calculating probabilities that land-
marks are used in online camera parameter estimation.
Priority Pi of landmark i is defined as Pi = Ei/Di.
Here, Ei represents the frequency that the landmark i
is judged as an inlier by robust estimation in the on-
line process and Di represents the frequency that the
landmark i is selected from the database as a matching
candidate. In this study, we assume that system admin-
istrator gives several training video to determine the pri-
orities before the system is used by users.

2.2 Camera parameter estimation
This section describes a camera parameter estima-

tion method in the online process (B). As shown in Fig-

ure 1, first, initial camera parameter is estimated (B-
1). Next, tentative camera parameter estimation (B-2),
selection of landmarks with high priorities (B-3), and
camera parameter estimation (B-4) are repeated. After
finishing camera parameter estimation, the priorities in
the database are updated based on the result of current
camera parameter estimation (B-5).
(B-1)Initial camera parameter estimation
Initial camera parameter for the first frame of input is
assumed to be given by landmark based camera pa-
rameter estimation method for a still image input [8].
Currently, this part does not implemented to the system
and initial parameters are given manually in the experi-
ments.
(B-2)Tentative camera parameter estimation
Tentative camera parameter is estimated by landmark
tracking between successive frames. In this process,
landmarks that are used to estimate camera parameter
in the previous frame are selected and tracked to the
current frame. In the successive frames, visual aspects
of landmarks hardly change. Thus, tracking of land-
marks can be realized by a simple SSD based tracker
with low computational cost. After landmark tracking,
tentative camera parameter is estimated by solving PnP
problem [9] using tracked landmarks. To remove out-
liers, LMedS estimator [10] is employed in this process.
(B-3)Selection of landmark based on priorities
In this process, landmarks that are visible from current
camera position are selected from the database by us-
ing estimated tentative camera parameter and geomet-
ric location of landmark. Next, top Nprior confident
landmarks are selected based on priorities of landmarks.
By using priorities of landmarks, unreliable landmarks
such as repeatable texture and natural object are effi-
ciently discarded. As a result, the number of landmarks
that should be tested in the next process can be reduced.
(B-4)Camera parameter estimation using corre-
spondences
Camera parameter of the current frame is estimated by
searching corresponding pairs between selected land-
marks and image features. To determine these corre-
spondences, first, landmarks selected from the database
are projected to the image plane using tentative camera
parameter. Corresponding landmarks and feature points
are then searched within a fixed window whose center is
at the projected landmark. In this process, window size
can be smaller than that for the process (B-2) because
camera parameter is roughly known. As a result, the
number of feature points for matching candidates can
be reduced. Finally, camera parameter is estimated by
solving PnP problem using corresponded pairs of land-
marks and feature points. In this process, outliers are
rejected by using a LMedS estimator as in (B-2).



(B-5)Updating priorities of landmarks
After finishing camera parameter estimation process,
priorities of landmarks are updated by using estimated
result. The priority Pi of the landmark i is updated as
follows:

Pi =
Eiold + Einew

Diold + Dinew
, (1)

where E and D represent the frequency that is described
in section 2.1. Subscripts inew and iold for these fre-
quency denote the current and the past camera parame-
ter estimation, respectively.

2.3 Effect of computational cost reduction
In this section, the effect of computational cost re-

duction from the previous method [5] in matching pro-
cess is discussed. Computational cost Cnew in match-
ing process for the proposed method can be represented
as sum of Ctrack for tentative camera parameter esti-
mation and Cproj for determination of corresponding
landmarks and feature points: Cnew = Ctrack + Cproj .
The cost Ctrack is lower than Cproj because illumi-
nation and view direction independent pattern match-
ing is not needed in landmark tracking process. By
using tentative camera parameter estimated by track-
ing landmarks, the number of feature points are re-
duced to S2/S1, where S1 and S2 represent the size of
search window in the previous and the proposed meth-
ods, respectively. The number of landmarks are also
reduced to (Nprior − Ntrack)/N by selecting land-
marks with high priorities. Here, N(N ≥ Nprior)
represents the maximum number of landmarks which
are selected from the database in the previous method
and Ntrack(Ntrack ≤ Nprior) represents the number of
landmarks which are used to estimate tentative camera
parameter. Resultingly, computational cost Cproj in the
proposed method is derived as follows:

Cproj =
(Nprior − Ntrack)

N

S2

S1
Cprev, (2)

where Cprev is the cost of matching process in the pre-
vious method. Note that effect of computational cost
reduction does not perfectly conform with Eq. (2) due
to the overhead of the iteration process.

3. Experiments
To show the effectiveness of the proposed method,

first, the computational cost is compared with the orig-
inal landmark based method [5]. Applications of land-
mark based real-time camera parameter estimation are
then demonstrated.

First, the landmark database is constructed for
an outdoor environment using omni-directional multi-
camera system (Point Grey Research Ladybug). Figure
3 shows sampled images used for database construction.

Figure 3. Sampled images taken by omni-
directional multi-camera system.

Figure 4. Result of 3-D reconstruction.

By applying the SFM process for these input image se-
quences, 3-D positions of image features and extrinsic
parameters of omni-directional camera are estimated as
shown in Figure 4. After database construction, 3 train-
ing video are taken in the target environment to com-
pute the priorities of landmarks. To evaluate the pro-
posed and the previous method, another video image
sequence (720 × 480 pixels, progressive scan, 15fps,
1,000 frames) is also captured. Each parameter in the
online process was set as shown in Table 1.

First, the number of landmarks to be selected from
the database is determined. Figure 5 shows estimation
errors in position for various number of selected land-
marks. In this experiment, camera parameter estimation
by the proposed method has never failed even the num-
ber of landmarks is set as 30, while camera parame-
ter estimation by the previous method failed when the
number of landmarks is 70 or less. In the proposed
method, error in position is slightly increased when the
number of landmarks is 50 or less. From this result,
we determine the number of landmarks as 60 for the

Table 1. Parameters in experiment.
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Figure 5. Relation between number of
landmarks and error in position.

proposed method and 80 for the previous method. For
these numbers, average estimation error in position is
233mm and 360mm for the proposed and the previous
methods, respectively. In this case, the accuracy is in-
creased even when the number of selected landmarks
are decreased. It is considered as the effect of the pri-
orities of landmarks. Table 2 shows processing time for
the previous and the proposed methods. By estimat-
ing tentative camera parameter and selecting landmarks
with high priorities, total computational cost is about 6
times cheaper than the previous method. As a result,
the proposed method can work in real-time. Although
computational cost in the matching process is ideally
over 24 times cheaper than that of the previous method
from Eq. (2), actually it was 20 times.

Figure 6 shows examples of AR applications using
the proposed method. In this figure, circles on the left
images indicate landmarks which are used for camera
parameter estimation. Figure 6(a) shows the AR car
navigation. The proposed method can estimate car po-
sition and posture more accurately and more frequently
than standard GPS-based systems and we can realize
high accurate geometric registration for AR. Figure 6(b)
shows the application for pre-visualization tool for film-
making using AR. Pre-visualization is a technique that
is used for testing a camera work and an acting in the
pre-production process of filmmaking. Our method has
worked in such a natural environment as shown in Fig-
ure 6(b).

4. Conclusion
In this paper, we have proposed a real-time cam-

era parameter estimation method by reducing matching
pairs of feature points and landmarks. Number of fea-

Table 2. Comparison of processing time.
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(a)Navigation by augmented reality.
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(b)Pre-visualization.

Figure 6. Examples of applications.
ture points are reduced by estimating tentative camera
parameters. Number of landmarks are reduced by us-
ing priorities of landmarks. In the proposed method,
camera parameter can be estimated in large and natural
environments.
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