

Real-time Geometric Registration of Real and Virtual Worlds Using a Feature Landmark Database with Priorities

Takafumi Taketomi, Tomokazu Sato, Sei Ikeda and Naokazu Yokoya

Graduate School of Information Science Nara Institute of Science and Technology, Japan

Goal and Approach

4

Goal

Real-time geometric registration using feature landmark database

Approach

Reduction of matching pairs:

- Reduction of feature points by estimating tentative camera parameter
- Reduction of landmarks by selecting landmarks with high priorities

Reduction of Feature Points

Reduction of feature points by estimating tentative camera parameters.

Previous fram

Current frame

Camera position and posture of the previous frame

Position of landmarks in the previous frame

Reduction of Feature Points

Reduction of feature points by estimating tentative camera parameters.

Previous frame

Current frame

Tentative camera position and posture

- Position of landmarks in the previous frame
- Position of landmarks in the current frame
 Projected position of landmark

Range of search becomes smaller than that in the previous method.

The number of feature points is reduced

Calculation of Priorities of Landmarks

13

Priorities are determined by calculating probabilities that landmarks are used in camera parameter estimation.

$$P_i = E_i / S_i$$

- E_i : Frequency that the landmark i is determined as an inlier by robust estimation.
- S_i : Frequency that the landmark i is selected from the database.

Priorities are updated by estimation results

Experiments

14

The proposed method is compared with the previous method [Oe et al.05] with respect to the robustness and the computational cost.

Experimental conditions

porimerical containence				
	Previous method	Proposed method		
Input image	Resolution 720x480 pixels	, 15 fps, 1000 frames		
Camera	SONY DSR-PD-150			
PC	Core 2 Extreme 2.93GHz, Memory 2GB			
Image template size of landmarks	15×15 pixels			
Range of search in tracking process	-	120×60 pixels		
Range of search in matching process	120×60 pixels	20×20 pixels		
Learning data	-	Estimation results of three sequences		
Initial value of priorities	-	0.5		

Improvement of Computational Cost

18

	processing time (ms)		Datis of	
	Previous method (N=80)	Proposed method (N=60)	Ratio of processing time	
Estimation of tentative camera parameter	-	28	-	
Landmark selection	12	1	0.08	
Matching	316	15	0.05	
Camera parameter estimation	61	17	0.28	
Other processing	4	5	1.25	
total	393(2.5fps)	66(15.1fps)	0.16	

The proposed method can work in real-time.

Result of Registration

Number of landmarks selected from database: 60 Processing time: 66 milliseconds per frame

Summary

20

- We propose real-time camera parameter estimation method by reducing matching pairs of feature points and landmarks.
 - Reduction of feature points by estimating tentative camera parameter
 - Reduction of landmarks by selecting high prior landmarks
- Camera parameter can be estimated in large and natural environments.

Feature Work

- Verification in various environments
- Automatic initial camera parameter estimation

Thank you!!

Discussions & More information

- NAIST, 8916-5 Takayama, Ikoma, NARA 630-0192 JAPAN mailto: takafumi-t@is.naist.jp
- Web: http://yokoya.naist.jp/index.html